These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6252430)

  • 1. Conceptual design of beryllium targets for the generation of neutron beams for radiation therapy by the (p,n) reaction.
    Awschalom M; Rosenberg I
    Med Phys; 1980; 7(5):492-4. PubMed ID: 6252430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of target thickness and backstop material on proton-produced neutron beams for radiotherapy.
    Awschalom M; Rosenberg I; Kuo TY; Tom JL
    Med Phys; 1980; 7(5):495-502. PubMed ID: 6252431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.
    Rosenberg I; Awschalom M; Kuo TY; Tom JL
    Med Phys; 1981; 8(6):808-12. PubMed ID: 7322079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological intercomparisons of neutron beams used for radiotherapy generated by p(+)-->Be in hospital-based cyclotrons.
    Hall EJ; Astor M; Brenner DJ
    Br J Radiol; 1992 Jan; 65(769):66-71. PubMed ID: 1336696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron beams from protons on beryllium.
    Bewley DK; Meulders JP; Octave-Prignot M; Page BC
    Phys Med Biol; 1980 Sep; 25(5):887-92. PubMed ID: 6256782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison for use in radiotherapy of neutron beams generated with 16 and 42 MeV deuterons on beryllium.
    Bewley DK; Cullen B; Field SB; Hornsey S; Page BC; Berry RJ
    Br J Radiol; 1976 Apr; 49(580):360-6. PubMed ID: 938853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target.
    Yue G; Chen J; Song R
    Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intercomparison of neutron measurments for a 25 MV x-ray radiotherapy accelerator.
    Nath R; Price KW; Holeman GR
    Med Phys; 1980; 7(5):545-8. PubMed ID: 6252432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical target system for accelerator-based BNCT which may effectively double the dose rate.
    Randers-Pehrson G; Brenner DJ
    Med Phys; 1998 Jun; 25(6):894-6. PubMed ID: 9650178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of the 50% maximum dose depth for 41-MeV (p+,Be) neutrons by use of filtration and/or transmission targets.
    Smathers JB; Graves RG; Earls L; Otte VA; Almond PR
    Med Phys; 1982; 9(6):856-9. PubMed ID: 6298587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and modelling of megavoltage photon beams for contrast-enhanced radiation therapy.
    Robar JL
    Phys Med Biol; 2006 Nov; 51(21):5487-504. PubMed ID: 17047265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H
    Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.
    Hashimoto Y; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2015 Dec; 106():88-91. PubMed ID: 26272165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():233-7. PubMed ID: 24345525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photon sensitivity of a moderated activation neutron detector.
    McGinley PH
    Med Phys; 1986; 13(5):700-2. PubMed ID: 3784999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.