BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 6252537)

  • 1. ACh-evoked complex membrane potential changes in mouse submaxillary gland acini. A study employing channel blockers and atropine.
    Wakui M; Nishiyama A
    Pflugers Arch; 1980 Aug; 386(3):251-9. PubMed ID: 6252537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: effect of acetylcholine.
    Nishiyama A; Petersen OH
    J Physiol; 1974 Oct; 242(1):173-88. PubMed ID: 4436820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.
    Iwatsuki N; Petersen OH
    J Physiol; 1977 Aug; 269(3):735-51. PubMed ID: 894613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change.
    Nishiyama A; Petersen OH
    J Physiol; 1975 Jan; 244(2):431-65. PubMed ID: 1142124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline.
    Iwatsuki N; Petersen OH
    J Physiol; 1978 Feb; 275():507-20. PubMed ID: 633148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiology of mouse parotid acini: effects of electrical field stimulation and ionophoresis of neurotransmitters.
    Gallacher DV; Petersen OH
    J Physiol; 1980 Aug; 305():43-57. PubMed ID: 7441562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of potassium transport induced by secretagogues in superfused submaxillary gland segments of rat and mouse.
    Katoh K; Nakasato M; Nishiyama A; Sakai M
    J Physiol; 1983 Aug; 341():371-85. PubMed ID: 6194288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parotid acinar cells: ionic dependence of acetylcholine-evoked membrane potential changes.
    Roberts ML; Iwatsuki N; Petersen OH
    Pflugers Arch; 1978 Sep; 376(2):159-67. PubMed ID: 568773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland.
    Findlay I
    J Physiol; 1984 May; 350():179-95. PubMed ID: 6086894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig.
    Kitamura K; Kuriyama H
    J Physiol; 1979 Aug; 293():119-33. PubMed ID: 501578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effects of autonomic nerve stimulation.
    Kagayama M; Nishiyama A
    J Physiol; 1974 Oct; 242(1):157-72. PubMed ID: 4436819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic acinar cells: membrane potential and resistance change evoked by acetylcholine.
    Nishiyama A; Petersen OH
    J Physiol; 1974 Apr; 238(1):145-58. PubMed ID: 4838802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine-evoked depolarization.
    Iwatsuki N; Petersen OH
    J Physiol; 1977 Aug; 269(3):723-33. PubMed ID: 894612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential and resistance changes induced in salivary gland acinar cells by microiontophoretic application of acetylcholine and adrenergic agonists.
    Roberts ML; Petersen OH
    J Membr Biol; 1978 Mar; 39(4):297-312. PubMed ID: 641980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization.
    Matthews EK; Petersen OH
    J Physiol; 1973 Jun; 231(2):283-95. PubMed ID: 4352766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K+ channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arteriole.
    Hashitani H; Suzuki H
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):319-29. PubMed ID: 9192304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane potential measurement in parotid acinar cells.
    Pedersen GL; Petersen OH
    J Physiol; 1973 Oct; 234(1):217-27. PubMed ID: 4797341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve.
    Ohashi M; Satoh K; Itoh T
    Br J Pharmacol; 1999 Jan; 126(1):19-26. PubMed ID: 10051116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nervous control of membrane conductance in mouse lacrimal acinar cells.
    Pearson GT; Petersen OH
    Pflugers Arch; 1984 Jan; 400(1):51-9. PubMed ID: 6709489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical properties of resting and acetylcholine-stimulated endothelium in intact rat aorta.
    Marchenko SM; Sage SO
    J Physiol; 1993 Mar; 462():735-51. PubMed ID: 8331598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.