BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 6252963)

  • 1. The effect of pH and ionic strength on the steady-state activity of isolated cytochrome C oxidase.
    Wilms J; van Rijn JL; Van Gelder BF
    Biochim Biophys Acta; 1980 Nov; 593(1):17-23. PubMed ID: 6252963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of cytochrome c by cytochrome c oxidase: spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism.
    Michel B; Bosshard HR
    Biochemistry; 1989 Jan; 28(1):244-52. PubMed ID: 2539857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of pH and ionic strength on cytochrome c oxidase steady-state kinetics reveal a catalytic and a non-catalytic interaction domain for cytochrome c.
    Sinjorgo KM; Steinebach OM; Dekker HL; Muijsers AO
    Biochim Biophys Acta; 1986 Jun; 850(1):108-15. PubMed ID: 3011088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover.
    Gerencsér L; Laczkó G; Maróti P
    Biochemistry; 1999 Dec; 38(51):16866-75. PubMed ID: 10606520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion and ionic strength effects upon the oxidation of cytochrome c by cytochrome c oxidase.
    Brooks SP; Nicholls P
    Biochim Biophys Acta; 1982 Apr; 680(1):33-43. PubMed ID: 6280764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover.
    Thörnström PE; Brzezinski P; Fredriksson PO; Malmström BG
    Biochemistry; 1988 Jul; 27(15):5441-7. PubMed ID: 2846037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum pH and ionic strength for the assay of cytochrome c oxidase from pea cotyledon mitochondria.
    Bomhoff GH; Spencer M
    Can J Biochem; 1977 Oct; 55(10):1114-7. PubMed ID: 21027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics.
    Sinjorgo KM; Meijling JH; Muijsers AO
    Biochim Biophys Acta; 1984 Oct; 767(1):48-56. PubMed ID: 6091751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pH and ionic strength on the pre-steady-state reaction of cytochrome c and cytochrome aa3.
    Wilms J; Dekker HL; Boelens R; van Gelder BF
    Biochim Biophys Acta; 1981 Aug; 637(1):168-76. PubMed ID: 6269605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase.
    Ferguson-Miller S; Brautigan DL; Margoliash E
    J Biol Chem; 1976 Feb; 251(4):1104-15. PubMed ID: 2600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase.
    Cooper CE
    Biochim Biophys Acta; 1990 Jun; 1017(3):187-203. PubMed ID: 2164845
    [No Abstract]   [Full Text] [Related]  

  • 13. Presteady-state and steady-state kinetic properties of human cytochrome c oxidase. Identification of rate-limiting steps in mammalian cytochrome c oxidase.
    Van Kuilenburg AB; Gorren AC; Dekker HL; Nieboer P; Van Gelder BF; Muijsers AO
    Eur J Biochem; 1992 May; 205(3):1145-54. PubMed ID: 1315683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis.
    Assempour M; Lim D; Hill BC
    Biochemistry; 1998 Jul; 37(28):9991-8. PubMed ID: 9665704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of cytochrome c oxidation by soluble and membrane-bound cytochrome aa3.
    Nicholls P; Hildebrandt V; Hill BC; Nicholls F; Wrigglesworth JM
    Can J Biochem; 1980 Oct; 58(10):969-77. PubMed ID: 6257347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ionic control of biochemical reactions].
    Douzou P; Maurel P
    C R Acad Hebd Seances Acad Sci D; 1976 Jun; 282(23):2107-10. PubMed ID: 9204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover.
    Sampson V; Alleyne T
    Eur J Biochem; 2001 Dec; 268(24):6534-44. PubMed ID: 11737208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of chronic alcohol consumption on the steady-state kinetics properties of cytochrome oxidase in rat liver.
    Thayer WS; Cummings JJ
    Biochim Biophys Acta; 1990 Apr; 1016(3):333-8. PubMed ID: 2158817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome-c-binding site on cytochrome oxidase in Paracoccus denitrificans.
    Witt H; Malatesta F; Nicoletti F; Brunori M; Ludwig B
    Eur J Biochem; 1998 Jan; 251(1-2):367-73. PubMed ID: 9492306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase.
    Hill BC; Greenwood C
    FEBS Lett; 1984 Jan; 166(2):362-6. PubMed ID: 6319198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.