BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 6252967)

  • 1. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically labelled calcium and 3-O-methylglucose from soleus muscles and epididymal fat pads of the rat.
    Sørensen SS; Christensen F; Clausen T
    Biochim Biophys Acta; 1980 Nov; 602(2):433-45. PubMed ID: 6252967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle.
    Clausen T; Elbrink J; Dahl-Hansen AB
    Biochim Biophys Acta; 1975 Jan; 375(2):292-308. PubMed ID: 1125213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on 45Ca-efflux and sugar transport in adipose tissue and skeletal muscle.
    Clausen T; Andersen TL; Stürup-Johansen M; Petkova O
    Biochim Biophys Acta; 1981 Aug; 646(2):261-7. PubMed ID: 6913407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effects of insulin and H2O2 on adipocyte glucose transport.
    Ciaraldi TP; Olefsky JM
    J Cell Physiol; 1982 Mar; 110(3):323-8. PubMed ID: 7045141
    [No Abstract]   [Full Text] [Related]  

  • 6. 3-O-methylglucose transport in soleus muscle of bacteremic rats.
    Westfall MV; Sayeed MM
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R55-63. PubMed ID: 3300373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats.
    Westfall MV; Sayeed MM
    Am J Physiol; 1988 Apr; 254(4 Pt 2):R673-9. PubMed ID: 3281478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of calcium in stimulation of sugar transport in muscle by lithium.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1985 Jun; 816(2):197-207. PubMed ID: 4005243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated net efflux of 3-O-[14C]methylglucose in isolated fat cells.
    Vinten J
    Biochim Biophys Acta; 1984 May; 772(3):244-50. PubMed ID: 6722147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of physical training on transport and metabolism of glucose in adipocytes.
    Vinten J; Galbo H
    Am J Physiol; 1983 Feb; 244(2):E129-34. PubMed ID: 6337501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. VII. The effects of extracellular Na + and K + on the transport of 3-O-methylglucose and glucose in rat soleus muscle.
    Kohn PG; Clausen T
    Biochim Biophys Acta; 1972 Mar; 255(3):798-814. PubMed ID: 5020225
    [No Abstract]   [Full Text] [Related]  

  • 13. Rat testis and epididymis can transport [3H] 3-O-methyl-D-glucose, [3H] inositol and [3H] alpha-aminoisobutyric acid across its epithelia in vivo.
    Hinton BT; Howards SS
    Biol Reprod; 1982 Dec; 27(5):1181-9. PubMed ID: 7159662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle.
    Clausen T; Flatman JA
    Am J Physiol; 1987 Apr; 252(4 Pt 1):E492-9. PubMed ID: 3031991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli.
    Cartee GD; Holloszy JO
    Am J Physiol; 1990 Feb; 258(2 Pt 1):E390-3. PubMed ID: 2305881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose tolerance factor stimulates 3-O-methylglucose transport into isolated rat adipocytes.
    Tokuda M; Kashiwagi A; Wakamiya E; Oguni T; Mino M; Kagamiyama H
    Biochem Biophys Res Commun; 1987 May; 144(3):1237-42. PubMed ID: 3555500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange of 3-O-methylglucose in isolated fat cells. Concentration dependence and effect of insulin.
    Vinten J; Gliemann J; Osterlind K
    J Biol Chem; 1976 Feb; 251(3):794-800. PubMed ID: 1249055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Wattis M; Bihler I
    Biochim Biophys Acta; 1986 Apr; 886(2):177-86. PubMed ID: 3083872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin binding, glucose oxidation, and methylglucose transport in isolated adipocytes from pregnant rats near term.
    Toyoda N; Murata K; Sugiyama Y
    Endocrinology; 1985 Mar; 116(3):998-1002. PubMed ID: 3882402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.