BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6253089)

  • 1. Acute effects of two melanocytolytic agents, hydroquinone and beta-mercaptoethanolamine, upon tyrosinase activity and cyclic nucleotide levels in murine melanomas.
    Abramowitz J; Chavin W
    Chem Biol Interact; 1980 Oct; 32(1-2):195-208. PubMed ID: 6253089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of ACTH, corticosterone and cyclic nucleotides in Harding-Passey melanoma melanogenesis.
    Abramowitz J; Chavin W
    Arch Dermatol Res; 1978 May; 261(3):303-9. PubMed ID: 210723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucocorticoid modulation of adrenocorticotropin-induced melanogenesis in the Cloudman S-91 melanoma in vitro.
    Abramowitz J; Chavin W
    Exp Cell Biol; 1978; 46(5):268-76. PubMed ID: 208885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ACTH and corticosterone on melanogenesis and cyclic nucleotide levels in the B-16 melanoma.
    Abramowitz J; Chavin W
    Arch Dermatol Res; 1979 May; 264(3):293-8. PubMed ID: 223504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective cytotoxicity of hydroquinone for melanocyte-derived cells is mediated by tyrosinase activity but independent of melanin content.
    Smith CJ; O'Hare KB; Allen JC
    Pigment Cell Res; 1988; 1(6):386-9. PubMed ID: 3148923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of alpha-MSH on the tyrosinase activity and the rate of melanin accumulation of melanoma cells in vitro.
    Lee TH; Lee MS
    Acta Endocrinol (Copenh); 1977 Mar; 84(3):663-72. PubMed ID: 402759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSH inhibits growth in a line of amelanotic hamster melanoma cells and induces increases in cyclic AMP levels and tyrosinase activity without inducing melanogenesis.
    Slominski A; Moellmann G; Kuklinska E
    J Cell Sci; 1989 Apr; 92 ( Pt 4)():551-9. PubMed ID: 2557357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of adenosine 3',5'-cyclic monophosphate in the density-dependent regulation of growth and tyrosinase activity of B-16 melanoma cells.
    Wade DR; Burkart ME
    J Cell Physiol; 1978 Mar; 94(3):265-73. PubMed ID: 202603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of Cloudman melanoma tyrosinase activity occurs predominantly in G2 phase of the cell cycle.
    Abdel-Malek ZA; Swope VB; Trinkle LS; Nordlund JJ
    Exp Cell Res; 1989 Jan; 180(1):198-208. PubMed ID: 2462505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cell division and of tyrosinase in B16 melanoma cells by imidazole: a possible role for the concept of metabolite gene regulation in mammalian cells.
    Montefiori DC; Kline EL
    J Cell Physiol; 1981 Feb; 106(2):283-91. PubMed ID: 6260821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro effects of melanocytolytic agents and other compounds upon dominant human melanoma tyrosinase activity.
    Chen YM; Chavin W
    Experientia; 1978 Jan; 34(1):21-2. PubMed ID: 413735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chymotrypsin activation of melanosome tyrosinase in hamster melanotic melanoma.
    Blagoeva PM; Pandov HI; Stoichkova NI
    J Cancer Res Clin Oncol; 1979 Oct; 95(2):139-45. PubMed ID: 118173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of pro-opiomelanocortin peptides on cyclic AMP and tyrosinase in melanoma cells.
    Farah JM; Bishop JF; Nguyen HQ; O'Donohue TL
    Peptides; 1986; 7(3):437-41. PubMed ID: 3022251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis.
    Chawla S; Kvalnes K; deLong MA; Wickett R; Manga P; Boissy RE
    J Drugs Dermatol; 2012 Oct; 11(10):e28-34. PubMed ID: 23134995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase activity and abundance in Cloudman melanoma cells.
    Halaban R; Pomerantz SH; Marshall S; Lerner AB
    Arch Biochem Biophys; 1984 Apr; 230(1):383-7. PubMed ID: 6201140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of inhibition of melanogenesis by hydroquinone.
    Palumbo A; d'Ischia M; Misuraca G; Prota G
    Biochim Biophys Acta; 1991 Jan; 1073(1):85-90. PubMed ID: 1899343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Investigation of tyrosinase activity and phospholipid composition in Harding-Passey melanoma microsomal fraction].
    Shtol'ko VN; Bogdanov GN; Vasil'eva LS; Burlakova EB
    Biokhimiia; 1978 Jan; 43(1):121-6. PubMed ID: 414789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanocyte-stimulating hormone and the regulation of tyrosinase activity in hair follicular melanocytes of the mouse.
    Burchill SA; Thody AJ
    J Endocrinol; 1986 Nov; 111(2):225-32. PubMed ID: 3098884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway.
    Jara JR; Aroca P; Solano F; Martinez JH; Lozano JA
    Biochim Biophys Acta; 1988 Nov; 967(2):296-303. PubMed ID: 2903772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The mechanism of depigmentation by hydroquinone: a study on suppression and recovery processes of tyrosinase activity in the pigment cells in vivo and in vitro].
    Hashimoto A; Ichihashi M; Mishima Y
    Nihon Hifuka Gakkai Zasshi; 1984 Jun; 94(7):797-804. PubMed ID: 6436557
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.