These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6253256)

  • 1. [Monochloroaniline breakdown via the meta cleavage in Alcaligenes faecalis].
    Surovtseva EG; Vasil'eva GK; Vol'nova AI; Baskunov BP
    Dokl Akad Nauk SSSR; 1980; 254(1):226-30. PubMed ID: 6253256
    [No Abstract]   [Full Text] [Related]  

  • 2. [Aniline as a single carbon, nitrogen, and energy source for Alcaligenes faecalis].
    Surovtseva EG; Vol'nova AI
    Mikrobiologiia; 1980; 49(1):49-53. PubMed ID: 7392997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Degradation of monochloro-substituted anilines by Alcaligenes faecalis].
    Surovtseva EG; Vol'nova AI; Shatskaia TIa
    Mikrobiologiia; 1980; 49(2):351-4. PubMed ID: 7393014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Decomposition of 3,4-dichloroaniline by an Alcaligenes faecalis culture].
    Surovtseva EG; Vasil'eva GK; Baskunov BP; Vol'nova AI
    Mikrobiologiia; 1981; 50(4):740-3. PubMed ID: 7311910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Aniline oxidation by microorganisms in chemostat cultivation].
    Orshanskaia FB; Zelenskaia TA; Arkad'eva ZA
    Mikrobiologiia; 1986; 55(2):337-8. PubMed ID: 3724566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Transformation of 3,4-dichloroaniline under nitrate-reducing conditions].
    Travkin VM; Baskunov BP; Golovlev EL; Golovleva LA
    Mikrobiologiia; 2001; 70(3):424-6. PubMed ID: 11450468
    [No Abstract]   [Full Text] [Related]  

  • 7. Aniline utilization by Alcaligenes faecalis: a taxonomic reappraisal.
    Rhodes ME
    J Appl Bacteriol; 1970 Dec; 33(4):714-20. PubMed ID: 5516596
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolism of 4-substituted-N-ethyl-N-methylanilines: chromatographic and mass spectrometric identification of N-oxidation metabolic products formed in vitro.
    Cowan DA; Patterson LH; Damani LA; Gorrod JW
    Biomed Mass Spectrom; 1982 Jun; 9(6):233-40. PubMed ID: 7104459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thiodiglycol metabolism in Alcaligenes xylosoxydans subsp. denitrificans].
    Ermakova IT; Starovoĭtov II; Tikhonova EB; Slepen'kin AV; Kashparov KI; Boronin AM
    Mikrobiologiia; 2002; 71(5):604-10. PubMed ID: 12449625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aniline degradation by electrocatalytic oxidation.
    Li Y; Wang F; Zhou G; Ni Y
    Chemosphere; 2003 Dec; 53(10):1229-34. PubMed ID: 14550354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of an electron-transfer mechanism in the peroxynitrite-mediated oxidation of 4-alkylphenols and tyrosine.
    Grossi L
    J Org Chem; 2003 Aug; 68(16):6349-53. PubMed ID: 12895070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry of 2-substituted-4-arylthiazoles. 3--Identification of microsomal nitroreduction products by mass spectrometry.
    Mattammal MB; Zenser TV; Davis BB; White EV
    Biomed Mass Spectrom; 1984 Apr; 11(4):149-54. PubMed ID: 6733253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physiology of aniline catabolism by achromobacter Ir2].
    Rabsch W; Fritsche W
    Z Allg Mikrobiol; 1977; 17(2):139-48. PubMed ID: 868083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinate synthesis of azurin I and copper nitrite reductase in Alcaligenes xylosoxidans during denitrification.
    Harris RL; Eady RR; Hasnain SS; Sawers RG
    Arch Microbiol; 2006 Sep; 186(3):241-9. PubMed ID: 16832626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectral fragmentation patterns of some new benzo[b]thiophene- and thieno[2,3-b]thiophene-2,5-dicarbonyldichlorides and -dicarbonyldianilides and anilidoquinolones.
    Karminski-Zamola G; Dogan J; Boykin DW; Bajić M
    Rapid Commun Mass Spectrom; 1995; 9(4):282-8. PubMed ID: 7756702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct trapping of formaldehyde formed via oxidative N-demethylation of N,N-dialkylarylamines by Bacillus megaterium using cysteamine derivatization.
    Taupp M; Heckel F; Harmsen D; Schreier P
    J Microbiol Methods; 2006 Nov; 67(2):357-62. PubMed ID: 16787677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Arsenic oxidation by the heterotrophic bacteria Pseudomonas putida and Alcaligenes eutrophus].
    Abdrashitova SA; Mynbaeva BN; Ilialetdinov AN
    Mikrobiologiia; 1981; 50(1):41-5. PubMed ID: 7219219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nitrite reduction by Alcaligenes odorans var. viridans].
    Chatelain R
    Ann Inst Pasteur (Paris); 1969 Apr; 116(4):498-500. PubMed ID: 5366475
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemical and crystallographic studies of the Met144Ala, Asp92Asn and His254Phe mutants of the nitrite reductase from Alcaligenes xylosoxidans provide insight into the enzyme mechanism.
    Ellis MJ; Prudêncio M; Dodd FE; Strange RW; Sawers G; Eady RR; Hasnain SS
    J Mol Biol; 2002 Feb; 316(1):51-64. PubMed ID: 11829502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive transformation of TNT by Escherichia coli: pathway description.
    Yin H; Wood TK; Smets BF
    Appl Microbiol Biotechnol; 2005 May; 67(3):397-404. PubMed ID: 15490158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.