BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6253309)

  • 21. A new chromatographic method for measurement of rubidium transport activities in cultured bovine retinal pigment epithelial cells.
    Crider JY; Williams GW; Yorio T; Sharif NA; Griffin BW
    Ophthalmic Res; 1997; 29(3):117-23. PubMed ID: 9211463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interrelationships among epidermal Na-K ATPase, developmental stage and length of Rana catesbeiana tadpoles.
    Casada JH; Nichols JR
    Comp Biochem Physiol A Comp Physiol; 1986; 85(3):429-33. PubMed ID: 2878770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na,K-ATPase polypeptide upregulation responses in lens epithelium.
    Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insulin stimulates the translocation of Na+/K(+)-dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle.
    Omatsu-Kanbe M; Kitasato H
    Biochem J; 1990 Dec; 272(3):727-33. PubMed ID: 2176476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective inhibition of membrane ATPases by hydrogen peroxide in the lens of the eye.
    Borchman D; Paterson C; Delamere N
    Basic Life Sci; 1988; 49():1029-33. PubMed ID: 2854973
    [No Abstract]   [Full Text] [Related]  

  • 26. Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells.
    Burke JM; McKay BS; Jaffe GJ
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):2042-6. PubMed ID: 1647375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrogenicity of the Na-K-ATPase pump in bullfrog cornea epithelium.
    Carrasquer G; Ahn S; Schwartz M; Rehm WS
    Am J Physiol; 1985 Aug; 249(2 Pt 2):F185-91. PubMed ID: 2992289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of activation of Na, K-ATPase in nerve fibres during rhythmic excitation.
    Maximov GV; Kols OR
    Gen Physiol Biophys; 1985 Jun; 4(3):279-85. PubMed ID: 2993099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium modulation of taurine transport across the frog retinal pigment epithelium.
    Miller SS; Steinberg RH
    J Gen Physiol; 1979 Aug; 74(2):237-59. PubMed ID: 314969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The retinal pigment epithelium controls the potassium activity in the subretinal space.
    la Cour M
    Acta Ophthalmol Suppl (1985); 1985; 173():9-10. PubMed ID: 3002115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of potassium transport in cultured retinal pigment epithelium and retinal glial cells by serum and epidermal growth factor.
    Arrindell EL; McKay BS; Jaffe GJ; Burke JM
    Exp Cell Res; 1992 Nov; 203(1):192-7. PubMed ID: 1330655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active transport of ions across frog retinal pigment epithelium.
    Miller SS; Steinberg RH
    Exp Eye Res; 1977 Sep; 25(3):235-48. PubMed ID: 304010
    [No Abstract]   [Full Text] [Related]  

  • 33. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space.
    la Cour M; Lund-Andersen H; Zeuthen T
    J Physiol; 1986 Jun; 375():461-79. PubMed ID: 2432225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The inhibition of Na, K-ATPase, and Mg-ATPase by timolol maleate in cultured non-pigmented epithelial cells of the ciliary body.
    Whikehart DR; Montgomery B; Sorna DH
    J Ocul Pharmacol; 1992; 8(2):107-14. PubMed ID: 1324285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of cyclic AMP upon Na,K-ATPase activity in rabbit ciliary epithelium.
    Delamere NA; King KL
    Invest Ophthalmol Vis Sci; 1992 Feb; 33(2):430-5. PubMed ID: 1310956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of Na+ K(+)-ATPase in regenerating retinal pigment epithelium in the rabbit. A study by electron microscopic cytochemistry.
    Korte GE; Wanderman MC
    Exp Eye Res; 1993 Feb; 56(2):219-29. PubMed ID: 8385023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model for transepithelial ion transport across the isolated retinal pigment epithelium of the frog.
    DiMattio J; Degnan KJ; Zadunaisky JA
    Exp Eye Res; 1983 Nov; 37(5):409-20. PubMed ID: 6608452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium.
    Griff ER; Shirao Y; Steinberg RH
    J Gen Physiol; 1985 Dec; 86(6):853-76. PubMed ID: 2416871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of ascorbic acid on active sodium transport in cultured rabbit nonpigmented ciliary epithelium.
    Hou Y; Pierce WM; Delamere NA
    Invest Ophthalmol Vis Sci; 1998 Jan; 39(1):143-50. PubMed ID: 9430555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro aging of bovine and human retinal pigment epithelium: number and activity of the Na/K ATPase pump.
    Burke JM; McKay BS
    Exp Eye Res; 1993 Jul; 57(1):51-7. PubMed ID: 8405172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.