BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6253456)

  • 1. Rat alveolar macrophages require NADPH for superoxide production in the respiratory burst. Effect of NADPH depletion by paraquat.
    Forman HJ; Nelson J; Fisher AB
    J Biol Chem; 1980 Oct; 255(20):9879-83. PubMed ID: 6253456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW; Nelson J; Harrison G; Forman HJ
    Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical chain reaction.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1986 Oct; 250(1):139-45. PubMed ID: 3021060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH.
    Hirai K; Ikeda K; Wang GY
    Toxicology; 1992; 72(1):1-16. PubMed ID: 1347181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of paraquat on the in vitro activity of cytosol, mitochondrial and microsomal enzyme systems.
    Rossouw DJ; Chase CC; Engelbrecht FM
    S Afr Med J; 1984 Apr; 65(14):555-63. PubMed ID: 6710262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oxygen and paraquat on the 14C-glucose oxidation of rabbit alveolar macrophages and lung slices.
    Rossouw DJ; Engelbrecht FM
    S Afr Med J; 1979 Mar; 55(14):558-60. PubMed ID: 451785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide production from paraquat evoked by exogenous NADPH in pulmonary endothelial cells.
    Tampo Y; Tsukamoto M; Yonaha M
    Free Radic Biol Med; 1999 Sep; 27(5-6):588-95. PubMed ID: 10490279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide generation by lipoxygenase in the presence of NADH and NADPH.
    Roy P; Roy SK; Mitra A; Kulkarni AP
    Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme.
    O'Donnell VB; Azzi A
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):805-12. PubMed ID: 8836123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages.
    Lew PD; Stossel TP
    J Clin Invest; 1981 Jan; 67(1):1-9. PubMed ID: 6256409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo oxidation of reduced nicotinamide-adenine dinucleotide phosphate by paraquat and diquat in rat lung.
    Witschi H; Kacew S; Hirai KI; Côté MG
    Chem Biol Interact; 1977 Nov; 19(2):143-60. PubMed ID: 22404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolarization and increased conductance precede superoxide release by concanavalin A-stimulated rat alveolar macrophages.
    Cameron AR; Nelson J; Forman HJ
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3726-8. PubMed ID: 6304734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide is responsible for the vanadate stimulation of NAD(P)H oxidation by biological membranes.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1988 Jun; 263(2):299-304. PubMed ID: 2837149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.