BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 6253563)

  • 1. Analysis of the colloid osmotic step of complement-mediated immune hemolysis.
    DeLisi C; Boyle M; Borsos T
    J Immunol; 1980 Nov; 125(5):2055-62. PubMed ID: 6253563
    [No Abstract]   [Full Text] [Related]  

  • 2. Distinction between C8-mediated and C8/C9-mediated hemolysis on the basis of independent 86Rb and hemoglobin release.
    Gee AP; Boyle MD; Borsos T
    J Immunol; 1980 Apr; 124(4):1905-10. PubMed ID: 7365242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional size of the primary complement lesion in resealed erythrocyte membrane ghosts.
    Giavedoni EB; Chow YM; Dalmasso AP
    J Immunol; 1979 Jan; 122(1):240-5. PubMed ID: 570203
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship between channel size and the number of C9 molecules in the C5b-9 complex.
    Ramm LE; Whitlow MB; Mayer MM
    J Immunol; 1985 Apr; 134(4):2594-9. PubMed ID: 2579147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restriction of complement-mediated membrane damage by the eighth component of complement: a dual role for C8 in the complement attack sequence.
    Nemerow GR; Yamamoto KI; Lint TF
    J Immunol; 1979 Sep; 123(3):1245-52. PubMed ID: 469249
    [No Abstract]   [Full Text] [Related]  

  • 6. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell.
    Hänsch GM; Hammer CH; Mayer MM; Shin ML
    J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the complement C9 binding domain in paramyosin of the blood fluke Schistosoma mansoni.
    Deng J; Gold D; LoVerde PT; Fishelson Z
    Int J Parasitol; 2007 Jan; 37(1):67-75. PubMed ID: 17123534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complement lysis of human erythrocytes. II. A unique interaction of human C8 and C9 with paroxysmal nocturnal hemoglobinuria erythrocytes.
    Packman CH; Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1980 Jun; 124(6):2818-23. PubMed ID: 7189536
    [No Abstract]   [Full Text] [Related]  

  • 9. Complement lysis of human erythrocytes. III. Differing effectiveness of human and guinea pig C9 on normal and paroxysmal nocturnal hemoglobinuria cells.
    Rosenfeld SI; Packman CH; Jenkins DE; Countryman JK; Leddy JP
    J Immunol; 1980 Nov; 125(5):2063-8. PubMed ID: 6776186
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the terminal stages of immune hemolysis. V. Evidence that not all complement-produced transmembrane channels are equal.
    Boyle MD; Borsos T
    J Immunol; 1979 Jul; 123(1):71-6. PubMed ID: 109540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effects of various compounds on lysis of antibody-coated sheep erythrocytes by hypotonic shock or complement.
    Müller-Peddinghaus R; Erdtmann K
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):287-92. PubMed ID: 6748820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The terminal stages of immune hemolysis--a brief review.
    Boyle MD; Borsos T
    Mol Immunol; 1980 Mar; 17(3):425-32. PubMed ID: 6255318
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes' radii detect complement-induced transmembrane channels of differing size.
    Boyle MD; Gee AP; Borsos T
    J Immunol; 1979 Jul; 123(1):77-82. PubMed ID: 109541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1984 Sep; 133(3):1453-63. PubMed ID: 6747293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The attack phase of human complement: differentiation between membrane binding and complex formation by the detection of neoantigen expression in situ. A morphometric immunoferritin study.
    Balkarowa-Ständer J; Rother U; Rauterberg EW
    J Immunol; 1981 Sep; 127(3):1089-93. PubMed ID: 7264298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complement lysis of resealed red cell membrane ghosts pretreated with glutaraldehyde.
    Giavedoni EB; Chow YM; Dalmasso AP
    J Immunol; 1979 May; 122(5):1643-8. PubMed ID: 109512
    [No Abstract]   [Full Text] [Related]  

  • 17. Number of hits necessary for complement-mediated hemolysis.
    Takeda J; Kozono H; Takata Y; Hong K; Kinoshita T; Sayama K; Tanaka E; Inoue K
    Microbiol Immunol; 1986; 30(5):461-8. PubMed ID: 3747864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations on the mechanism of immune hemolysis: importance of immunoglobulin class and source of complement on the extent of damage.
    Frank MM; Dourmashkin RR; Humphrey JH
    J Immunol; 1970 Jun; 104(6):1502-10. PubMed ID: 5452415
    [No Abstract]   [Full Text] [Related]  

  • 19. Natural inhibitors of complement. I. Anticomplementary activity associated with pokeweed mitogen (PWM).
    Gancevici GG; Popescu C
    Arch Roum Pathol Exp Microbiol; 1985; 44(4):337-46. PubMed ID: 3838045
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of the lytic effect of guinea pig complement by rabbit complement.
    Kempf RA; Gigli I; Austen KF
    J Immunol; 1969 Apr; 102(4):795-803. PubMed ID: 5768190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.