These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6254097)

  • 1. On the state of chromophore protonation in rhodopsin: implication for primary photochemistry in visual pigments.
    Narva D; Callender RH
    Photochem Photobiol; 1980 Aug; 32(2):273-6. PubMed ID: 6254097
    [No Abstract]   [Full Text] [Related]  

  • 2. [Photochemistry of visual pigments (author's transl)].
    Coulangeon LM; Sole P; Lemaire J
    J Fr Ophtalmol; 1979 Dec; 2(12):735-44. PubMed ID: 395183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of wavelength regulation in visual pigments.
    Kakitani H; Kakitani T; Rodman H; Honig B
    Photochem Photobiol; 1985 Apr; 41(4):471-9. PubMed ID: 4011704
    [No Abstract]   [Full Text] [Related]  

  • 5. Photosensitivities of iodopsin and rhodopsins.
    Okano T; Fukada Y; Shichida Y; Yoshizawa T
    Photochem Photobiol; 1992 Dec; 56(6):995-1001. PubMed ID: 1492139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy.
    DeGrip WJ; Gray D; Gillespie J; Bovee PH; Van den Berg EM; Lugtenburg J; Rothschild KJ
    Photochem Photobiol; 1988 Oct; 48(4):497-504. PubMed ID: 3231685
    [No Abstract]   [Full Text] [Related]  

  • 7. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A; Converse CA
    Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore of a long-lived photoproduct formed with metarhodopsin III in the isolated frog retina.
    Azuma M; Azuma K
    Photochem Photobiol; 1984 Oct; 40(4):495-9. PubMed ID: 6334322
    [No Abstract]   [Full Text] [Related]  

  • 10. [Effect of gamma irradiation on a solution of the visual pigment rhodopsin].
    Pushkareva TV; Sverdlov AG
    Radiobiologiia; 1975; 15(4):596-9. PubMed ID: 1188057
    [No Abstract]   [Full Text] [Related]  

  • 11. Proton uptake by light induced interaction between rhodopsin and G-protein.
    Schleicher A; Hofmann KP
    Z Naturforsch C Biosci; 1985; 40(5-6):400-5. PubMed ID: 2992179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin bleaching intermediates and enzyme activation in the rod outer segment.
    Knowles A
    Biochem Soc Trans; 1983 Dec; 11(6):672-4. PubMed ID: 6141965
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments.
    Waddell WH; Crouch R; Nakanishi K; Turro NJ
    J Am Chem Soc; 1976 Jul; 98(14):4189-92. PubMed ID: 932359
    [No Abstract]   [Full Text] [Related]  

  • 14. Photophysics of light transduction in rhodopsin and bacteriorhodopsin.
    Birge RR
    Annu Rev Biophys Bioeng; 1981; 10():315-54. PubMed ID: 7020578
    [No Abstract]   [Full Text] [Related]  

  • 15. Behaviour of octopus rhodopsin and its photoproducts at very low temperatures.
    Tsuda M; Tokunaga F; Ebrey TG; Yue KT; Marque J; Eisenstein L
    Nature; 1980 Oct; 287(5781):461-2. PubMed ID: 7432472
    [No Abstract]   [Full Text] [Related]  

  • 16. Photochemical studies of 7-cis-rhodopsin at low temperatures. Nature and properties of the bathointermediate.
    Kawamura S; Miyatani S; Matsumoto H; Yoshizawa T; Liu RS
    Biochemistry; 1980 Apr; 19(8):1549-53. PubMed ID: 7378362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal chromophore of rhodopsin photoisomerizes within picoseconds.
    Hayward G; Carlsen W; Siegman A; Stryer L
    Science; 1981 Feb; 211(4485):942-4. PubMed ID: 7466366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin bleaching and rod adaptation.
    Catt M; Ernst W; Kemp CM; O'Bryan PM
    Biochem Soc Trans; 1983 Dec; 11(6):676-8. PubMed ID: 6667776
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.