These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 6254433)

  • 1. Viral and bacterial antibody responses in multiple sclerosis.
    Vartdal F; Vandvik B; Norrby E
    Ann Neurol; 1980 Sep; 8(3):248-55. PubMed ID: 6254433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency of an intrathecal IgM synthesis and MRZ reaction in children with MS.
    Chen S; A B; Koukou G; Wendel EM; Thiels C; Baumann M; Lechner C; Blaschek A; Della Marina A; Classen G; Stüve B; Kauffmann B; Kapanci T; Mayer B; Otto M; Rostásy K
    Eur J Paediatr Neurol; 2024 May; 50():51-56. PubMed ID: 38636242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral antibody titers, immunogenetic markers, and their interrelations in multiple sclerosis patients and controls.
    Alpérovitch A; Berr C; Cambon-Thomsen A; Puel J; Dugoujon JM; Ruidavets JB; Clanet M
    Hum Immunol; 1991 Jun; 31(2):94-9. PubMed ID: 2066275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies to Epstein-Barr virus and neurotropic viruses in multiple sclerosis and optic neuritis.
    Houen G; Heiden J; Trier NH; Draborg AH; Benros ME; Zinkevičiūtė R; Petraitytė-Burneikienė R; Ciplys E; Slibinskas R; Frederiksen JL
    J Neuroimmunol; 2020 Jul; 346():577314. PubMed ID: 32682138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell transcriptomics combined with proteomics of intrathecal IgG reveal transcriptional heterogeneity of oligoclonal IgG-secreting cells in multiple sclerosis.
    Polak J; Wagnerberger JH; Torsetnes SB; Lindeman I; Høglund RAA; Vartdal F; Sollid LM; Lossius A
    Front Cell Neurosci; 2023; 17():1189709. PubMed ID: 37362001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration.
    Podbielska M; O'Keeffe J; Pokryszko-Dragan A
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G1m1 predominance of intrathecal virus-specific antibodies in multiple sclerosis.
    Tomescu-Baciu A; Vartdal F; Holmøy T; Vedeler CA; Lossius A
    Ann Clin Transl Neurol; 2018 Oct; 5(10):1303-1309. PubMed ID: 30349866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Regulation of Self-reactive CD4
    Savarin C; Bergmann CC; Hinton DR; Stohlman SA
    Front Immunol; 2016; 7():370. PubMed ID: 27708643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-reactive CD4(+) T cells activated during viral-induced demyelination do not prevent clinical recovery.
    Savarin C; Bergmann CC; Gaignage M; Stohlman SA
    J Neuroinflammation; 2015 Nov; 12():207. PubMed ID: 26559484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of Lymphocyte Anergy to Glycolipids in Multiple Sclerosis (MS): iNKT Cells May Mediate the MS Infectious Trigger.
    Hogan EL; Podbielska M; O'Keeffe J
    J Clin Cell Immunol; 2013 Jun; 4(3):. PubMed ID: 26347308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytomegalovirus and multiple sclerosis risk.
    Pakpoor J; Pakpoor J; Disanto G; Giovannoni G; Ramagopalan SV
    J Neurol; 2013 Jun; 260(6):1658-60. PubMed ID: 23589194
    [No Abstract]   [Full Text] [Related]  

  • 12. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation.
    Lossius A; Johansen JN; Torkildsen Ø; Vartdal F; Holmøy T
    Viruses; 2012 Dec; 4(12):3701-30. PubMed ID: 23342374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initiation and prevention of multiple sclerosis.
    Ascherio A; Munger KL; Lünemann JD
    Nat Rev Neurol; 2012 Nov; 8(11):602-12. PubMed ID: 23045241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural and functional role of myelin fast-migrating cerebrosides: pathological importance in multiple sclerosis.
    Podbielska M; Levery SB; Hogan EL
    Clin Lipidol; 2011 Apr; 6(2):159-179. PubMed ID: 22701512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The double-edged sword of autoimmunity: lessons from multiple sclerosis.
    Hestvik AL
    Toxins (Basel); 2010 Apr; 2(4):856-77. PubMed ID: 22069614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral triggers of multiple sclerosis.
    Kakalacheva K; Münz C; Lünemann JD
    Biochim Biophys Acta; 2011 Feb; 1812(2):132-40. PubMed ID: 20600868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. B cells in multiple sclerosis.
    Burgoon MP; Gilden DH; Owens GP
    Front Biosci; 2004 Jan; 9():786-96. PubMed ID: 14766408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of viruses in etiology and pathogenesis of multiple sclerosis.
    Soldan SS; Jacobson S
    Adv Virus Res; 2001; 56():517-55. PubMed ID: 11450311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis.
    O'Connor KC; Bar-Or A; Hafler DA
    J Clin Immunol; 2001 Mar; 21(2):81-92. PubMed ID: 11332657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular approach to find target(s) for oligoclonal bands in multiple sclerosis.
    Rand KH; Houck H; Denslow ND; Heilman KM
    J Neurol Neurosurg Psychiatry; 1998 Jul; 65(1):48-55. PubMed ID: 9667560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.