BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6254771)

  • 21. Role of metal cations in the regulation of NADP-linked isocitrate dehydrogenase from porcine heart.
    Murakami K; Iwata S; Haneda M; Yoshino M
    Biometals; 1997 Jul; 10(3):169-74. PubMed ID: 9243796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicotinamide adenine dinucleotide phosphate linked isocitrate dehydrogenase. Catalytic activation by the reduced coenzyme product of the reaction.
    Carlier M-F ; Pantaloni D
    Biochemistry; 1976 Apr; 15(8):1761-6. PubMed ID: 5114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distances among coenzyme and metal sites of NADP+-dependent isocitrate dehydrogenase using resonance energy transfer.
    Bailey JM; Colman RF
    Biochemistry; 1987 Jul; 26(15):4893-900. PubMed ID: 3663631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coenzyme binding by triphosphopyridine nucleotide dependent isocitrate dehydrogenase from beef liver. Equilibrium and kinetics studies.
    Carlier MF; Pantaloni D
    Biochemistry; 1976 Oct; 15(21):4703-12. PubMed ID: 9985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus-31 nuclear magnetic resonance studies of the binding of nucleotides to NADP+-specific isocitrate dehydrogenase.
    Mas MT; Colman RF
    Biochemistry; 1984 Apr; 23(8):1675-83. PubMed ID: 6722120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogensis from ammonia in isolated rat hepatocytes.
    Sies H; Akerboom TP; Tager JM
    Eur J Biochem; 1977 Jan; 72(2):301-7. PubMed ID: 13998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function relationships in TPN-dependent isocitrate dehydrogenase. II. Determination of the paramagnetic relaxation rates of water protons in complexes of enzyme, Mn(II), substrates, cofactors, and inhibitors.
    Levy RS; Villafranca JJ
    Biochemistry; 1977 Jul; 16(15):3301-9. PubMed ID: 19045
    [No Abstract]   [Full Text] [Related]  

  • 29. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Purification and various properties of hyaloplasmic NADP-dependent isocitrate dehydrogenase from the rabbit adrenal gland].
    Strumilo SA; Viktorovich NM; Vinogradov VV
    Biokhimiia; 1984 Feb; 49(2):240-6. PubMed ID: 6713022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and crystallization of NADP+-specific isocitrate dehydrogenase from Escherichia coli using polyethylene glycol.
    Hackert ML; Harris BA; Poulsen LL
    Biochim Biophys Acta; 1977 Apr; 481(2):340-7. PubMed ID: 15602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NADP-linked isocitrate dehydrogenase from beef liver: a new method of purification and the effect of metal ion cofactor on its stability.
    Balamir A
    Biochem Med; 1983 Apr; 29(2):194-206. PubMed ID: 6860318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pH on the role of Mg2+ and Mn2+ on Phycomyces isocitrate lyase kinetics.
    Rúa J; Soler J; Busto F; de Arriaga D
    Biochimie; 1997 Apr; 79(4):179-86. PubMed ID: 9242982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of NADP+-linked isocitrate dehydrogenase from an alkalophilic Bacillus.
    Shikata S; Ozaki K; Kawai S; Ito S; Okamoto K
    Biochim Biophys Acta; 1988 Feb; 952(3):282-9. PubMed ID: 3337829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Role of Mn2+ in the equilibrium of NADP-dependent isocitrate dehydrogenases].
    Shevchenko MI; Gulyĭ MF
    Ukr Biokhim Zh; 1973; 45(6):718-23. PubMed ID: 4151546
    [No Abstract]   [Full Text] [Related]  

  • 36. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex.
    Pry TA; Hsu RY
    Biochemistry; 1980 Mar; 19(5):951-62. PubMed ID: 7356971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic studies of the interactions of coenzymes and coenzyme fragments with pig heart, oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase.
    Mas MT; Colman RF
    Biochemistry; 1985 Mar; 24(7):1634-46. PubMed ID: 3843532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NADP-dependent isocitrate dehydrogenase from bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Biochem Int; 1988 Sep; 17(3):489-98. PubMed ID: 3202883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interrelationships among nucleotide binding sites of pig heart NAD-dependent isocitrate dehydrogenase.
    Ehrlich RS; Colman RF
    J Biol Chem; 1982 May; 257(9):4769-74. PubMed ID: 7068663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. beta-Sulfur substituted alpha-ketoglutarates as inhibitors and alternate substrates for isocitrate dehydrogenases and certain other enzymes.
    Plaut GW; Aogaichi T; Gabriel JL
    Arch Biochem Biophys; 1986 Feb; 245(1):114-24. PubMed ID: 3947094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.