These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6254823)

  • 41. Neurotrophic regulation of two properties of skeletal muscle by impulse-dependent and spontaneous acetylcholine transmission.
    Drachman DB; Stanley EF; Pestronk A; Griffin JW; Price DL
    J Neurosci; 1982 Feb; 2(2):232-43. PubMed ID: 6278104
    [No Abstract]   [Full Text] [Related]  

  • 42. Effects of muscle electrical activity on the transmission of developing neuromuscular junction.
    Tang YG; Xie ZP; Mao J; He ZQ; Zhao NM
    Sci China B; 1994 May; 37(5):573-80. PubMed ID: 7917001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A non-immunogenic myasthenia gravis model and its application in a study of transsynaptic regulation at the neuromuscular junction.
    Molenaar PC; Oen BS; Plomp JJ; Van Kempen GT; Jennekens FG; Hesselmans LF
    Eur J Pharmacol; 1991 Apr; 196(1):93-101. PubMed ID: 1874282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase.
    Rosenberry TL
    Biophys J; 1979 May; 26(2):263-89. PubMed ID: 262418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decrease of acetylcholine receptor synthesis in muscle cultures by electrical stimulation.
    Shainberg A; Burstein M
    Nature; 1976 Nov; 264(5584):368-9. PubMed ID: 1004561
    [No Abstract]   [Full Text] [Related]  

  • 46. Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle.
    Steinbach JH; Merlie J; Heinemann S; Bloch R
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3547-51. PubMed ID: 291023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current-voltage relation and reversal potential at junctional and extrajunctional ACh-receptors of the frog neuromuscular junction.
    Mallart A; Dreyer F; Peper K
    Pflugers Arch; 1976 Mar; 362(1):43-7. PubMed ID: 943777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in chemosensitivity of skeletal muscles as related to endplate formation.
    Gordon T; Jones R; Vrbova G
    Prog Neurobiol; 1976; 3(2):103-36. PubMed ID: 778916
    [No Abstract]   [Full Text] [Related]  

  • 49. Neonatal denervation inhibits the normal postnatal decrease in endplate channel open time.
    Schuetze SM; Vicini S
    J Neurosci; 1984 Sep; 4(9):2297-302. PubMed ID: 6090614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of junctional and extrajunctional acetylcholine-receptor channels in organ cultured human muscle fibres.
    Cull-Candy SG; Miledi R; Uchitel OD
    J Physiol; 1982 Dec; 333():251-67. PubMed ID: 6304284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Function and structure of the ACh receptor at the muscle end-plate.
    Landau EM
    Prog Neurobiol; 1978; 10(4):253-88. PubMed ID: 366675
    [No Abstract]   [Full Text] [Related]  

  • 52. Ion movements in endplate channels.
    Adams PR
    Brain Res Bull; 1979; 4(1):147-8. PubMed ID: 466490
    [No Abstract]   [Full Text] [Related]  

  • 53. Postsynaptic currents in different types of frog muscle fibre.
    Fedorov VV; Magazanik LG; Snetkov VA; Zefirov AL
    Pflugers Arch; 1982 Sep; 394(3):202-10. PubMed ID: 6292820
    [No Abstract]   [Full Text] [Related]  

  • 54. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction.
    Magleby KL; Weinstock MM
    J Physiol; 1980 Feb; 299():203-18. PubMed ID: 6247480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates.
    Albuquerque EX; Barnard EA; Porter CW; Warnick JE
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2818-22. PubMed ID: 4546945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of myasthenic IgG on miniature end-plate currents in mouse diaphragm.
    Pennefather P; Quastel DM
    Life Sci; 1980 Dec; 27(22):2047-54. PubMed ID: 7207007
    [No Abstract]   [Full Text] [Related]  

  • 57. The timing of channel opening during miniature end-plate currents.
    Cohen I; van der Kloot W; Attwell D
    Brain Res; 1981 Oct; 223(1):185-9. PubMed ID: 6974583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Congenital myasthenic syndromes: II. Syndrome attributed to abnormal interaction of acetylcholine with its receptor.
    Uchitel O; Engel AG; Walls TJ; Nagel A; Atassi MZ; Bril V
    Muscle Nerve; 1993 Dec; 16(12):1293-301. PubMed ID: 8232384
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of L-type and N-type voltage-dependent calcium channels (VDCCs) on spontaneous acetylcholine release at the mammalian neuromuscular junction.
    Losavio A; Muchnik S
    Ann N Y Acad Sci; 1998 May; 841():636-45. PubMed ID: 9668307
    [No Abstract]   [Full Text] [Related]  

  • 60. Receptors, innervation, and neurotransmitter release: microphysiology of chemical synapses.
    Gorio A
    Adv Biochem Psychopharmacol; 1980; 21():57-65. PubMed ID: 6246759
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.