These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6254959)

  • 21. The role of arginyl residues in directing carboxymethylation of horse liver alcohol dehydrogenase.
    Lange LG; Riordan JF; Vallee BL; Brändén CI
    Biochemistry; 1975 Jul; 14(15):3497-502. PubMed ID: 167828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactions of mercaptans with cytochrome c oxidase and cytochrome c.
    Wilms J; Lub J; Wever R
    Biochim Biophys Acta; 1980 Feb; 589(2):324-35. PubMed ID: 6243968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of complex formation upon the reduction rates of cytochrome c and cytochrome c peroxidase compound II.
    Cokic P; Erman JE
    Biochim Biophys Acta; 1987 Jul; 913(3):257-71. PubMed ID: 3036233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis.
    Eltis LD; Herbert RG; Barker PD; Mauk AG; Northrup SH
    Biochemistry; 1991 Apr; 30(15):3663-74. PubMed ID: 1849735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some electron-transfer reactions involving carbodi-imide-modified cytochrome c.
    Mathews AJ; Brittain T
    Biochem J; 1987 Apr; 243(2):379-84. PubMed ID: 2820377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational and functional studies of chemically modified cytochrome c: nitrated and iodinated cytochromes c.
    Pal PK; Verma B; Myer YP
    Biochemistry; 1975 Sep; 14(19):4325-34. PubMed ID: 170959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arginyl residues: anion recognition sites in enzymes.
    Riordan JF; McElvany KD; Borders CL
    Science; 1977 Mar; 195(4281):884-6. PubMed ID: 190679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of cytochrome c with nitrite and nitric oxide. A model of dissimilatory nitrite reductase.
    Orii Y; Shimada H
    J Biochem; 1978 Dec; 84(6):1542-52. PubMed ID: 216667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for aconitase activity inactivation by butanedione and binding of substrates and inhibitors.
    Gawron O; Jones L
    Biochim Biophys Acta; 1977 Oct; 484(2):453-64. PubMed ID: 597359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ascorbate reduction of horse heart cytochrome c. A zero-energy reduction reaction.
    Myer YP; Kumar S
    J Biol Chem; 1984 Jul; 259(13):8144-50. PubMed ID: 6330101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steady-state kinetics and the inactivation by 2,3-butanedione of the energy-independent transhydrogenase of Escherichia coli cell membranes.
    Homyk M; Bragg PD
    Biochim Biophys Acta; 1979 Dec; 571(2):201-17. PubMed ID: 389287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ascorbate reduction of denatured ferricytochrome c.
    Kaminsky LS; Miller VJ
    Biochem Biophys Res Commun; 1972 Oct; 49(1):252-6. PubMed ID: 4342725
    [No Abstract]   [Full Text] [Related]  

  • 34. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An essential arginyl residue at the nucleotide binding site of creatine kinase.
    Borders CL; Riordan JF
    Biochemistry; 1975 Oct; 14(21):4699-704. PubMed ID: 1237312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue.
    Borchardt RT; Schasteen CS
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328
    [No Abstract]   [Full Text] [Related]  

  • 37. Essential arginyl residues in the H+-translocating ATPase of plasma membrane from the yeast Schizosaccharomyces pombe.
    Di Pietro A; Goffeau A
    Eur J Biochem; 1985 Apr; 148(1):35-9. PubMed ID: 2858389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The reaction between the superoxide anion radical and cytochrome c.
    Butler J; Jayson GG; Swallow AJ
    Biochim Biophys Acta; 1975 Dec; 408(3):215-22. PubMed ID: 60
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of arginine in the reactive site of proteinase inhibitors by selective and reversible derivatization of the arginine side chain.
    Dietl T; Tschesche H
    Hoppe Seylers Z Physiol Chem; 1976 May; 357(5):657-65. PubMed ID: 964925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.