These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6254990)

  • 1. Ligand interactions of diphtheria toxin. I. Binding and hydrolysis of NAD.
    Lory S; Carroll SF; Bernard PD; Collier RJ
    J Biol Chem; 1980 Dec; 255(24):12011-5. PubMed ID: 6254990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand interactions of diphtheria toxin. III. Direct photochemical cross-linking of ATP and NAD to toxin.
    Carroll SF; Lory S; Collier RJ
    J Biol Chem; 1980 Dec; 255(24):12020-4. PubMed ID: 7440583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand interactions of diphtheria toxin. II. Relationships between the NAD site and the P site.
    Lory S; Carroll SF; Collier RJ
    J Biol Chem; 1980 Dec; 255(24):12016-9. PubMed ID: 7440582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity.
    Wilson BA; Blanke SR; Reich KA; Collier RJ
    J Biol Chem; 1994 Sep; 269(37):23296-301. PubMed ID: 8083236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of diphtheria toxin with adenylyl-(3',5')-uridine 3'-monophosphate. II. The NAD-binding site and determinants of dinucleotide affinity.
    Collins CM; Collier RJ
    J Biol Chem; 1984 Dec; 259(24):15159-62. PubMed ID: 6511789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling of diphtheria toxin fragment A with 8-azidoadenosyl nicotinamide adenine dinucleotide.
    Lodaya R; Blanke SR; Collier RJ; Slama JT
    Biochemistry; 1999 Oct; 38(42):13877-86. PubMed ID: 10529233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of the thiol-dependent ADP-ribosyltransferase and NAD glycohydrolase activities of Bordetella pertussis toxin by adenine nucleotides, phospholipids, and detergents.
    Moss J; Stanley SJ; Watkins PA; Burns DL; Manclark CR; Kaslow HR; Hewlett EL
    Biochemistry; 1986 May; 25(9):2720-5. PubMed ID: 2872921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the role of a nucleoside-phosphate-binding site of diphtheria toxin in the binding of toxin to Vero cells or liposomes.
    Boquet P; Duflot E
    Eur J Biochem; 1981 Dec; 121(1):93-8. PubMed ID: 6895727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation.
    Blanke SR; Huang K; Collier RJ
    Biochemistry; 1994 Dec; 33(51):15494-500. PubMed ID: 7803411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diphtheria toxin catalyzed hydrolysis of NAD(+): molecular dynamics study of enzyme-bound substrate, transition state, and inhibitor.
    Kahn K; Bruice TC
    J Am Chem Soc; 2001 Dec; 123(48):11960-9. PubMed ID: 11724604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADP-ribosylation of membrane proteins by bacterial toxins in the presence of NAD glycohydrolase.
    Gill DM; Coburn J
    Biochim Biophys Acta; 1988 Apr; 954(1):65-72. PubMed ID: 2833927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of NAD+ to pertussis toxin.
    Lobban MD; Irons LI; van Heyningen S
    Biochim Biophys Acta; 1991 Jun; 1078(2):155-60. PubMed ID: 1648404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histidine 21 is at the NAD+ binding site of diphtheria toxin.
    Papini E; Schiavo G; SandonĂ¡ D; Rappuoli R; Montecucco C
    J Biol Chem; 1989 Jul; 264(21):12385-8. PubMed ID: 2526125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism.
    Matsumura N; Tanuma S
    Biochem Biophys Res Commun; 1998 Dec; 253(2):246-52. PubMed ID: 9878523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of NAD+ glycohydrolase activity by NAD(+)-dependent auto-ADP-ribosylation.
    Han MK; Lee JY; Cho YS; Song YM; An NH; Kim HR; Kim UH
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):903-8. PubMed ID: 8836136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of NAD+ by cholera toxin.
    Galloway TS; van Heyningen S
    Biochem J; 1987 May; 244(1):225-30. PubMed ID: 2821999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein).
    Moss J; Stanley SJ; Burns DL; Hsia JA; Yost DA; Myers GA; Hewlett EL
    J Biol Chem; 1983 Oct; 258(19):11879-82. PubMed ID: 6311827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diphtheria toxin: nucleotide binding and toxin heterogeneity.
    Lory S; Collier RJ
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):267-71. PubMed ID: 6928618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.