These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6254990)

  • 21. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.
    Wilson BA; Reich KA; Weinstein BR; Collier RJ
    Biochemistry; 1990 Sep; 29(37):8643-51. PubMed ID: 1980208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1-N6-Etheno-ADP-ribosylation of elongation factor-2 by diphtheria toxin.
    Giovane A; Balestrieri C; Quagliuolo L; Servillo L
    FEBS Lett; 1985 Oct; 191(2):191-4. PubMed ID: 2996930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase.
    Moss J; Manganiello VC; Vaughan M
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4424-7. PubMed ID: 188038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calf-spleen nicotinamide-adenine dinucleotide glycohydrolase. Properties of the active site.
    Schuber F; Pascal M; Travo P
    Eur J Biochem; 1978 Feb; 83(1):205-14. PubMed ID: 203460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of diphtheria toxin fragment A across mammalian cell membranes.
    Boquet P
    Biochem Biophys Res Commun; 1977 Apr; 75(3):699-702. PubMed ID: 193499
    [No Abstract]   [Full Text] [Related]  

  • 26. NAD-glycohydrolase activity of botulinum C2 toxin: a possible role of component I in the mode of action of the toxin.
    Ohishi I
    J Biochem; 1986 Aug; 100(2):407-13. PubMed ID: 3023308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.
    Cakir-Kiefer C; Muller-Steffner H; Oppenheimer N; Schuber F
    Biochem J; 2001 Sep; 358(Pt 2):399-406. PubMed ID: 11513738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD.
    Carroll SF; Collier RJ
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3307-11. PubMed ID: 6145155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of action of choleragen.
    Vaughan M; Moss J
    J Supramol Struct; 1978; 8(4):473-88. PubMed ID: 214641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine diphosphoribose transfer reactions catalyzed by Bungarus fasciatus venom NAD glycohydrolase.
    Yost DA; Anderson BM
    J Biol Chem; 1983 Mar; 258(5):3075-80. PubMed ID: 6298221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit.
    Antoine R; Tallett A; van Heyningen S; Locht C
    J Biol Chem; 1993 Nov; 268(32):24149-55. PubMed ID: 7901213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase.
    Muller-Steffner H; Muzard M; Oppenheimer N; Schuber F
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1279-85. PubMed ID: 7980606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diphtheria toxin.
    Pappenheimer AM
    Annu Rev Biochem; 1977; 46():69-94. PubMed ID: 20040
    [No Abstract]   [Full Text] [Related]  

  • 34. Artificial hybrid protein containing a toxic protein fragment and a cell membrane receptor-binding moiety in a disulfide conjugate. II. Biochemical and biologic properties of diphtheria toxin fragment A-S-S-human placental lactogen.
    Chang TM; Dazord A; Neville DM
    J Biol Chem; 1977 Feb; 252(4):1515-22. PubMed ID: 190237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor 2 in eukaryotic cells.
    Fendrick JL; Iglewski WJ; Moehring JM; Moehring TJ
    Eur J Biochem; 1992 Apr; 205(1):25-31. PubMed ID: 1313365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auto-ADP-ribosylation of NAD glycohydrolase from Neurospora crassa.
    Cho YS; Han MK; Kwark OS; Phoe MS; Cha YS; An NH; Kim UH
    Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):175-81. PubMed ID: 9787786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [ADP-ribosylation of histones of the chicken liver nucleus at different rates of glycohydrolase hydrolysis of NAD].
    Khalmuradov AG; Muliavko NA
    Biokhimiia; 1984 Jan; 49(1):20-4. PubMed ID: 6322868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The tuberculosis necrotizing toxin is an NAD
    Tak U; Vlach J; Garza-Garcia A; William D; Danilchanka O; de Carvalho LPS; Saad JS; Niederweis M
    J Biol Chem; 2019 Mar; 294(9):3024-3036. PubMed ID: 30593509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.