BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 6255476)

  • 1. Antigen-liposome modification of target cells as a method to alter their susceptibility to lysis by cytotoxic T lymphocytes.
    Hale AH; Ruebush MJ; Lyles DS; Harris DT
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):6105-8. PubMed ID: 6255476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elicitation of anti-viral cytotoxic T lymphocytes with purified viral and H-2 antigens.
    Hale AH; Ruebush MJ; Harris DT
    J Immunol; 1980 Jul; 125(1):428-30. PubMed ID: 6247399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elicitation of anti-Sendai virus cytotoxic T lymphocytes by viral and H-2 antigens incorporated into the same lipid bilayer by membrane fusion and by reconstitution into liposomes.
    Hale AH; Lyles DS; Fan DP
    J Immunol; 1980 Feb; 124(2):724-31. PubMed ID: 6243330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elicitation of primary anti-Sendai virus cytotoxic T lymphocytes with purified viral glycoproteins.
    McGee M; Hale AH; Panetti M
    Eur J Immunol; 1980 Dec; 10(12):923-8. PubMed ID: 6258925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elicitation of anti-H-2 cytotoxic T lymphocytes with antigen-modified H-2 negative stimulator cells.
    Hale AH; Ruebush MJ; Harris DT; McGee MP
    J Immunol; 1981 Apr; 126(4):1485-8. PubMed ID: 6970778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic T-lymphocyte reactivity with individual Sendai virus glycoproteins.
    Al-Ahdal MN; Nakamura I; Flanagan TD
    J Virol; 1985 Apr; 54(1):53-7. PubMed ID: 2983119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of fusion activity of ultraviolet light-inactivated Sendai virus in formation of target antigens recognized by cytotoxic T cells.
    Sugamura K; Shimizu K; Bach FH
    J Exp Med; 1978 Jul; 148(1):276-87. PubMed ID: 78960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of targets for alloreactive CTL using purified H-2Kk in liposomes and polyethylene glycol.
    Reed ML; Herrmann SH
    Mol Immunol; 1986 Dec; 23(12):1339-47. PubMed ID: 3493426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxic T cell lysis of target cells fused with liposomes containing influenza virus haemagglutinin and neuraminidase.
    Stitz L; Huang RT; Hengartner H; Rott R; Zinkernagel RM
    J Gen Virol; 1985 Jun; 66 ( Pt 6)():1333-9. PubMed ID: 3874262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The induction of virus-specific cytotoxic T lymphocytes with solubilized viral and membrane proteins.
    Finberg R; Mescher M; Burakoff SJ
    J Exp Med; 1978 Dec; 148(6):1620-7. PubMed ID: 214512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active function of membrane receptors for enveloped viruses. I. Specific requirement for liposome-associated sialoglycolipids, but not sialoglycoproteins, to allow lysis of phospholipid vesicles by reconstituted Sendai viral envelopes.
    Citovsky V; Zakai N; Loyter A
    Exp Cell Res; 1986 Oct; 166(2):279-94. PubMed ID: 3017741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for generating cell membrane antigens that are recognized by cytotoxic T lymphocytes.
    Ciavarra R; Kang CY; Forman J
    Fed Proc; 1981 Feb; 40(2):222-7. PubMed ID: 6257559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of cytolytic T cells by isolated viral peptides and HN protein coupled to agarose beads.
    Guertin DP; Fan DP
    Nature; 1980 Jan; 283(5744):308-11. PubMed ID: 6153234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of viral glycoproteins by influenza A-specific cross-reactive cytolytic T lymphocytes.
    Koszinowski UH; Allen H; Gething MJ; Waterfield MD; Klenk HD
    J Exp Med; 1980 Apr; 151(4):945-58. PubMed ID: 6154763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-reactive anti-vesicular stomatitis virus (VSV) cytotoxic T lymphocytes recognize the major surface glycoprotein.
    Hale AH; Ruebush MJ; Lefrançois L
    Eur J Immunol; 1981 May; 11(5):434-6. PubMed ID: 6266837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection against rabies in mice by a cytotoxic T cell clone recognizing the glycoprotein of rabies virus.
    Kawano H; Mifune K; Ohuchi M; Mannen K; Cho S; Hiramatsu K; Shichijo A
    J Gen Virol; 1990 Feb; 71 ( Pt 2)():281-7. PubMed ID: 2307962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential susceptibility of cells expressing allogeneic MHC or viral antigen to killing by antigen-specific CTL.
    Lee K; Takenaka H; Yoneda Y; Goto T; Sano K; Nakanishi M; Eguchi A; Okada M; Tashiro J; Sakurai K; Kubota T; Yoshida R
    Microbiol Immunol; 2004; 48(1):15-25. PubMed ID: 14734854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell membrane antigens recognized by anti-viral and anti-trinitrophenyl cytotoxic T lymphocytes.
    Ciavarra R; Forman J
    Immunol Rev; 1981; 58():73-94. PubMed ID: 6273294
    [No Abstract]   [Full Text] [Related]  

  • 19. Fusion of Sendai virus with the target cell membrane is required for T cell cytotoxicity.
    Gething M; Koszinowski U; Waterfield M
    Nature; 1978 Aug; 274(5672):689-91. PubMed ID: 209339
    [No Abstract]   [Full Text] [Related]  

  • 20. Minimal molecular requirements for reactivity of tumor cells with T cells.
    Hale AH; Lyles DS; Paulus LK; Ruebush MJ
    J Immunol; 1980 May; 124(5):2063-70. PubMed ID: 6245133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.