BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6255766)

  • 1. Novel aspects of skeletal muscle protein kinase and protein phosphatase regulation by Ca2+.
    Heilmeyer LM; Gröschel-Stewart U; Jahnke U; Kilimann MW; Kohse KP; Varsanyi M
    Adv Enzyme Regul; 1980; 18():121-44. PubMed ID: 6255766
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase.
    Hörl WH; Heilmeyer LM
    Biochemistry; 1978 Mar; 17(5):766-72. PubMed ID: 204329
    [No Abstract]   [Full Text] [Related]  

  • 3. The control of phosphorylase kinase phosphatase activity by polycations and the deinhibitor protein.
    Goris J; Walsh DA; Merlevede W
    Biochem Biophys Res Commun; 1984 Nov; 125(1):293-8. PubMed ID: 6095839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit structure and regulation of phosphorylase phosphatase.
    Ballou LM; Villa-Moruzzi E; Fischer EH
    Curr Top Cell Regul; 1985; 27():183-92. PubMed ID: 3004819
    [No Abstract]   [Full Text] [Related]  

  • 5. Dephosphorylation of skeletal muscle phosphorylase, glycogen synthase, and phosphorylase kinase beta-subunit by a Mn2+-activated protein phosphatase.
    Brautigan DL; Khatra BS; Soderling TR; Fischer EH
    Arch Biochem Biophys; 1982 Nov; 219(1):228-35. PubMed ID: 6295283
    [No Abstract]   [Full Text] [Related]  

  • 6. The activation and dissociation of a native high molecular weight form of rabbit skeletal muscle phosphorylase phosphatase by endogenous CA2+-dependent proteases.
    Mellgren RL; Aylward JH; Killilea SD; Lee EY
    J Biol Chem; 1979 Feb; 254(3):648-52. PubMed ID: 216680
    [No Abstract]   [Full Text] [Related]  

  • 7. Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype for reversible covalent enzyme modification.
    Krebs EG
    Curr Top Cell Regul; 1981; 18():401-19. PubMed ID: 6268366
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylase phosphatase complex from skeletal muscle. Activation of one of two catalytic subunits by manganese ions.
    Brautigan DL; Picton C; Fischer EH
    Biochemistry; 1980 Dec; 19(25):5787-94. PubMed ID: 6257290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of phosphorylase phosphatase in rat liver by protein phosphorylation.
    Dombrádi V; Gergely P; Bot G
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(4):235-8. PubMed ID: 225918
    [No Abstract]   [Full Text] [Related]  

  • 10. Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism.
    Hemmings BA; Resink TJ; Cohen P
    FEBS Lett; 1982 Dec; 150(2):319-24. PubMed ID: 6297978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native and latent forms of skeletal muscle phosphorylase phosphatase.
    Laloux M; Hers HG
    FEBS Lett; 1979 Sep; 105(2):239-43. PubMed ID: 226412
    [No Abstract]   [Full Text] [Related]  

  • 12. Activation of skeletal muscle phosphorylase phosphatase. Effects of proteolysis and divalent cations.
    Brautigan DL; Ballou LM; Fischer EH
    Biochemistry; 1982 Apr; 21(9):1977-82. PubMed ID: 6284210
    [No Abstract]   [Full Text] [Related]  

  • 13. The hormonal control of glycogen metabolism. Phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline.
    Foulkes JG; Cohen P
    Eur J Biochem; 1979 Jun; 97(1):251-6. PubMed ID: 225171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ regulation of sarcoplasmic reticular protein phosphatase activity.
    Varsányi M; Heilmeyer LM
    Biochemistry; 1979 Oct; 18(22):4869-75. PubMed ID: 228702
    [No Abstract]   [Full Text] [Related]  

  • 15. Dephosphorylation of phosphorylase kinase by a histone H1-stimulated phosphoprotein phosphatase.
    Mellgren RL; Wilson SE; Schlender KK
    FEBS Lett; 1984 Feb; 167(2):291-4. PubMed ID: 6321244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-Mg-dependent phosphorylase phosphatase in mammalian tissues.
    Yang SD; Vandenheede JR; Goris J; Merlevede W
    FEBS Lett; 1980 Feb; 111(1):201-4. PubMed ID: 6244179
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of a Ca2+ -dependent protein kinase in skeletal muscle membranes of I-strain and wild-type mice.
    Varsànyi M; Gröschel-Stewart U; Heilmeyer MG
    Eur J Biochem; 1978 Jun; 87(2):331-40. PubMed ID: 668698
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of a Ca2+ dependent protein kinase and a protein phosphatase on the Ca2+ -phosphate transport ATPase.
    Hörl WH; Heilmeyer LM
    Adv Exp Med Biol; 1977; 81():385-94. PubMed ID: 197823
    [No Abstract]   [Full Text] [Related]  

  • 19. Dephosphorylation and inactivation of phosphorylase kinase: subunit specificity of rabbit skeletal muscle protein phosphatases.
    Ganapathi MK; Lee EY
    Arch Biochem Biophys; 1984 Aug; 233(1):19-31. PubMed ID: 6087741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hysteretic properties of rabbit skeletal muscle phosphorylase kinase: synergistic activation by phosphorylase b, Ca2+, and Mg2+.
    Kurganov BI; Andreeva IE; Makeeva VF; Livanova NB
    Biochem Mol Biol Int; 1996 Jul; 39(4):805-12. PubMed ID: 8843350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.