These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6256341)

  • 1. Ordered complexes of cytochrome c fragments. Kinetics of formation of the reduced (ferrous) forms.
    Parr GR; Taniuchi H
    J Biol Chem; 1981 Jan; 256(1):125-32. PubMed ID: 6256341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic intermediates in the formation of ordered complexes from cytochrome c fragments. Evidence that methionine ligation is a late event in the folding process.
    Parr GR; Taniuchi H
    J Biol Chem; 1980 Sep; 255(18):8914-8. PubMed ID: 6251068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of a compact structure for kinetic intermediates in the folding of a fragment complex of tuna cytochrome c.
    Parr GR; Taniuchi H
    J Biol Chem; 1983 Mar; 258(6):3759-63. PubMed ID: 6300055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular flip between two alternative forms of complex formed from a heme fragment and apoprotein of horse cytochrome c.
    Juillerat MA; Taniuchi H
    J Biol Chem; 1987 Oct; 262(28):13440-8. PubMed ID: 2820970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation which facilitates rejoining of horse cytochrome c apofragment [Homoser-lactone65](1-65) or [Homoser-lactone65] (23-65) to apofragment (66-104).
    Gozzini L; Taniuchi H; DiBello C
    Int J Pept Protein Res; 1991 Apr; 37(4):293-8. PubMed ID: 1654307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a biologically active, ordered complex from two overlapping fragments of cytochrome c.
    Hantgan RR; Taniuchi H
    J Biol Chem; 1977 Feb; 252(4):1367-74. PubMed ID: 190231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine-oxidized horse heart cytochrome c. III. Ascorbate reduction and the methionine-80-sulfur-iron linkage.
    Myer YP; Kumar S
    J Protein Chem; 1989 Feb; 8(1):33-50. PubMed ID: 2548524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c.
    Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of a heme fragment of horse cytochrome c which forms a productive complex with a native apofragment.
    Veloso D; Juillerat M; Taniuchi H
    J Biol Chem; 1984 May; 259(10):6067-73. PubMed ID: 6327663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of methylation on cytochrome c fragment complementation.
    Brems DN; Stellwagen E
    J Biol Chem; 1981 Nov; 256(22):11688-90. PubMed ID: 6271757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of roles of evolutionarily invariant proline 30 and glycine 34 of cytochrome c.
    Poerio E; Parr GR; Taniuchi H
    J Biol Chem; 1986 Aug; 261(24):10976-89. PubMed ID: 3015948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of reduction by free flavin semiquinones of the components of the cytochrome c-cytochrome c peroxidase complex and intracomplex electron transfer.
    Hazzard JT; Poulos TL; Tollin G
    Biochemistry; 1987 May; 26(10):2836-48. PubMed ID: 3038167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of core domains, and the core domain-domain interaction of cytochrome c fragment complex.
    Fisher A; Taniuchi H
    Arch Biochem Biophys; 1992 Jul; 296(1):1-16. PubMed ID: 1376596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic study of the formation of ordered complexes of ferric cytochrome c fragments.
    Parr GR; Taniuchi H
    J Biol Chem; 1979 Jun; 254(11):4836-42. PubMed ID: 220263
    [No Abstract]   [Full Text] [Related]  

  • 17. Azide binding to the cytochrome c ferric heme octapeptide. A model for anion binding to the active site of high spin ferric heme proteins.
    Blumenthal DC; Kassner RJ
    J Biol Chem; 1979 Oct; 254(19):9617-20. PubMed ID: 226523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation process of bovine heart ubiquinol-cytochrome c reductase as studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model.
    Orii Y; Miki T
    J Biol Chem; 1997 Jul; 272(28):17594-604. PubMed ID: 9211907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the reduction mechanism for Desulfovibrio gigas cytochrome c3.
    Catarino T; Coletta M; LeGall J; Xavier AV
    Eur J Biochem; 1991 Dec; 202(3):1107-13. PubMed ID: 1662601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of dithionite reduction of the heme nonapeptide of cytochrome c.
    Arif Kazmi S; Mills MA; Pitluk ZW; Scott RA
    J Inorg Biochem; 1985 May; 24(1):9-12. PubMed ID: 2989426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.