BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6256479)

  • 1. Phosphorylation of endogenous proteins by adenosine 3':5'-monophosphate-dependent protein kinase in mouse neuroblastoma cells.
    Prashad N; Evetts C; Wischmeyer B
    J Neurochem; 1980 Jul; 35(1):38-46. PubMed ID: 6256479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and activation of cyclic adenosine 3':5'-monophosphate-dependent protein kinase in C1300 murine neuroblastoma clones growing in vivo.
    Nakajima F; Imashuku S; Green AA
    Int J Cancer; 1982 Dec; 30(6):805-12. PubMed ID: 6298124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of the regulatory subunit of type I adenosine cyclic 3':5'-monophosphate-dependent protein kinase in differentiated N-18 mouse neuroblastoma cells.
    Liu AY; Chan T; Chen KY
    Cancer Res; 1981 Nov; 41(11 Pt 1):4579-87. PubMed ID: 6272981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of cyclic AMP-dependent protein kinase and stimulation of protein phosphorylation in response to adenosine in C-1300 murine neuroblastoma.
    Green RD; Noland TA
    J Supramol Struct; 1979; 10(2):125-35. PubMed ID: 222964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actions of insulin, epinephrine, and dibutyryl cyclic adenosine 5'-monophosphate on fat cell protein phosphorylations. Cyclic adenosine 5'-monophosphate dependent and independent mechanisms.
    Benjamin WB; Singer I
    Biochemistry; 1975 Jul; 14(15):3301-9. PubMed ID: 167823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromodulator-mediated phosphorylation of specific proteins in a neurotumor hybrid cell line (NCB-20).
    Berry-Kravis E; Kazmierczak BI; Derechin V; Dawson G
    J Neurochem; 1988 Apr; 50(4):1287-96. PubMed ID: 2450174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of dibutyryl cyclic adenosine monophosphate and retinoic acid on the growth, differentiation, and cyclic adenosine monophosphate-binding protein of murine neuroblastoma cells.
    Prashad N; Lotan D; Lotan R
    Cancer Res; 1987 May; 47(9):2417-24. PubMed ID: 3032422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Ca2+ and cyclic AMP in the phosphorylation of rat-liver soluble proteins by endogenous protein kinases.
    Van den Berg GB; Van Berkel TJ; Koster JF
    Eur J Biochem; 1980 Dec; 113(1):131-40. PubMed ID: 6257513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional gel analysis of cyclic AMP effects in cultured S49 mouse lymphoma cells: protein modifications, inductions and repressions.
    Steinberg RA; Coffino P
    Cell; 1979 Nov; 18(3):719-33. PubMed ID: 229961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of tyrosine hydroxylase on at least three sites in rat pheochromocytoma PC12 cells treated with 56 mM K+: determination of the sites on tyrosine hydroxylase phosphorylated by cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases.
    Tachikawa E; Tank AW; Yanagihara N; Mosimann W; Weiner N
    Mol Pharmacol; 1986 Nov; 30(5):476-85. PubMed ID: 2877391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro phosphorylation of phosphatidylethanolamine N-methyltransferase by cAMP-dependent protein kinase: lack of in vivo phosphorylation in response to N6-2'-O-dibutryladenosine 3',5'-cyclic monophosphate.
    Ridgway ND; Vance DE
    Biochim Biophys Acta; 1989 Aug; 1004(2):261-70. PubMed ID: 2546592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic adenosine 3':5'-monophosphate-binding protein, a biochemical marker of neuroblastoma differentiation.
    Prashad N; Rosenberg R; Baskin F; Sparkman D; Ulrich C; Wischmeyer B
    Cancer Res; 1980 Aug; 40(8 Pt 1):2884-9. PubMed ID: 6248216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective changes in the phosphorylation of endogenous proteins in subcellular fractions from cyclic AMP-induced differentiated neuroblastoma cells.
    Ehrlich YH; Prasad KN; Sinha PK; Davis LG; Brunngraber EG
    Neurochem Res; 1978 Dec; 3(6):803-13. PubMed ID: 216947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro protein phosphorylation in head preparations from normal and mutant Drosophila melanogaster.
    Buxbaum JD; Dudai Y
    J Neurochem; 1987 Oct; 49(4):1161-73. PubMed ID: 3040907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of pig epidermal soluble protein by endogenous cAMP-dependent protein kinase.
    Yoshikawa K; Takeda J; Nemoto O; Ito T; Halprin KM; Adachi K
    J Invest Dermatol; 1983 Feb; 80(2):108-11. PubMed ID: 6296235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine 3',5'-monophosphate-dependent protein kinase associated with the cytoskeleton of adrenal tumor cells.
    Osawa S; Hall PF
    Endocrinology; 1985 Dec; 117(6):2347-56. PubMed ID: 4065035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered function of protein kinase C and cyclic adenosine monophosphate-dependent protein kinase in a cell line derived from a mouse lung papillary tumor.
    Nicks KM; Droms KA; Fossli T; Smith GJ; Malkinson AM
    Cancer Res; 1989 Sep; 49(18):5191-8. PubMed ID: 2548715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine 3',5'-monophosphate-dependent phosphoproteins in human placenta.
    Moore JJ; Cardaman RC
    Endocrinology; 1985 Jan; 116(1):288-95. PubMed ID: 2981067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of free cyclic AMP receptor protein and regulation of its level by cyclic AMP in neuroblastoma-glioma hybrid cells.
    Walter U; Costa MR; Breakefield XO; Greengard P
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3251-5. PubMed ID: 226964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic AMP-dependent protein phosphorylation in isolated neuronal growth cones from developing rat forebrain.
    Lockerbie RO; Eddé B; Prochiantz A
    J Neurochem; 1989 Mar; 52(3):786-96. PubMed ID: 2537377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.