These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6256743)

  • 21. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1982 Jan; 2(1):1-10. PubMed ID: 7050664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive effect of GAC gene product on the mRNA level of glyoxalase I gene in Saccharomyces cerevisiae.
    Inoue Y; Yano H; Ginya H; Tsuchiyama H; Murata K; Kimura A
    Biotechnol Appl Biochem; 1991 Dec; 14(3):391-4. PubMed ID: 1777125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular characterization of a gene that confers 2-deoxyglucose resistance in yeast.
    Sanz P; Randez-Gil F; Prieto JA
    Yeast; 1994 Sep; 10(9):1195-202. PubMed ID: 7754708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribosomal protein genes rp 39(10 - 78), rp 39(11 - 40), rp 51, and rp 52 are not contiguous to other ribosomal protein genes in the Saccharomyces cerevisiae genome.
    Woolford JL; Rosbash M
    Nucleic Acids Res; 1981 Oct; 9(19):5021-36. PubMed ID: 6273793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal analysis of general control of amino acid biosynthesis in Saccharomyces cerevisiae: role of positive regulatory genes in initiation and maintenance of mRNA derepression.
    Penn MD; Thireos G; Greer H
    Mol Cell Biol; 1984 Mar; 4(3):520-8. PubMed ID: 6325881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway.
    Parrish WR; Stefan CJ; Emr SD
    J Cell Sci; 2005 Dec; 118(Pt 23):5589-601. PubMed ID: 16306222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a sequence responsible for periodic synthesis of yeast histone 2A mRNA.
    Osley MA; Hereford L
    Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7689-93. PubMed ID: 6760202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis.
    Srinivasan S; Seaman M; Nemoto Y; Daniell L; Suchy SF; Emr S; De Camilli P; Nussbaum R
    Eur J Cell Biol; 1997 Dec; 74(4):350-60. PubMed ID: 9438131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of PFK3--a gene involved in particulate phosphofructokinase synthesis reveals additional functions of TPS2 in Saccharomyces cerevisiae.
    Sur IP; Lobo Z; Maitra PK
    Yeast; 1994 Feb; 10(2):199-209. PubMed ID: 8203161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Co-expression of gpd1 and hor2 from Saccharomyces cerevisiae in Escherichia coli].
    Du LQ; Wei YT; Chen FZ; Luo ZF; Huang RB
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):385-9. PubMed ID: 16108361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. THE ABSENCE OF A CORRELATION BETWEEN THE EXTERNAL PHOSPHATASE ACTIVITY OF YEAST AND PHOSPHATE UPTAKE.
    BORSTPAUWELS GW
    Biochim Biophys Acta; 1964 Dec; 93():659-61. PubMed ID: 14263167
    [No Abstract]   [Full Text] [Related]  

  • 33. Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae.
    Klinz FJ; Gallwitz D
    Nucleic Acids Res; 1985 Jun; 13(11):3791-804. PubMed ID: 3892483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products.
    Bostian KA; Lemire JM; Cannon LE; Halvorson HO
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4504-8. PubMed ID: 7001459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4.
    Legrain M; De Wilde M; Hilger F
    Nucleic Acids Res; 1986 Apr; 14(7):3059-73. PubMed ID: 3008105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Posttranslational regulation of repressible acid phosphatase in yeast.
    Schweingruber ME; Schweingruber AM
    Mol Gen Genet; 1979 Jun; 173(3):349-51. PubMed ID: 384156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85.
    Uesono Y; Tanaka K; Toh-e A
    Nucleic Acids Res; 1987 Dec; 15(24):10299-309. PubMed ID: 3320965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloned pairs of variable region genes for immunoglobulin heavy chains isolated from a clone library of the entire mouse genome.
    Kemp DJ; Cory S; Adams JM
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4627-31. PubMed ID: 116236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of AAS genes and their regulatory role in general control of amino acid biosynthesis in yeast.
    Penn MD; Galgoci B; Greer H
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2704-8. PubMed ID: 6341997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.