These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6257238)

  • 41. Photophosphorylation studies with fluorescent adenine nucleotide analogs.
    Shahak Y; Chipman DM; Shavit N
    FEBS Lett; 1973 Jul; 33(3):293-6. PubMed ID: 4269645
    [No Abstract]   [Full Text] [Related]  

  • 42. Studies on the energy coupling sites of photophosphorylation. 3. The different effects of methylamine and ADP plus phosphate on electron transport through coupling sites I and II in isolated chloroplasts.
    Gould JM; Ort DR
    Biochim Biophys Acta; 1973 Oct; 325(1):157-66. PubMed ID: 4770727
    [No Abstract]   [Full Text] [Related]  

  • 43. Physical mechanism of ATP formation in biomembranes.
    Blumenfeld LA
    J Biomol Struct Dyn; 1988 Aug; 6(1):23-33. PubMed ID: 2908427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delayed light studies on photosynthetic energy conversion. VIII. Evidence from millisecond emission of chloroplasts for two adenylate binding sites on membrane-bound coupling factor, CF1.
    Vambutas V; Bertsch W
    Biochim Biophys Acta; 1975 Jan; 376(1):169-79. PubMed ID: 235980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Partial deglycosylation of chloroplast coupling factor 1 (CF1) prevents the reconstitution of photophosphorylation.
    Maione TE; Jagendorf AT
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3733-6. PubMed ID: 6233612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specificity of nucleotide binding sites in isolated chloroplast coupling factor (CF1).
    Banai M; Shavit N; Chipman DM
    Biochim Biophys Acta; 1978 Oct; 504(1):100-7. PubMed ID: 152121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Reconstitution of the function of the coupling complex of chloroplasts on phospholipid vesicles].
    Vashakmadze GSh; Krendeleva TE; Kukarskikh GP; Khramova GA; Rubin AB
    Biokhimiia; 1982 Sep; 47(9):1556-62. PubMed ID: 6215957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of covalent binding of a derivative of 2',3'-O-(2,4,6-trinitrophenyl)-ADP to the tight binding site of CF1 on the enzyme activity.
    Hisabori T; Kothen G; Strotmann H
    J Biochem; 1993 Sep; 114(3):324-8. PubMed ID: 8282720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does AMP participate in photosynthetic phosphorylation?
    Vambutas V; Bertsch W
    Biochem Biophys Res Commun; 1976 Dec; 73(3):686-93. PubMed ID: 1008883
    [No Abstract]   [Full Text] [Related]  

  • 51. Quercetin, an energy transfer inhibitor in photophosphorylation.
    Mukohata Y; Nakabayashi S; Higashida M
    FEBS Lett; 1978 Jan; 85(2):215-8. PubMed ID: 620800
    [No Abstract]   [Full Text] [Related]  

  • 52. [Electron paramagnetic resonance of electron transport in photosynthetic systems. XI. Effects of photosynthetic control: dependence of the rate of electron transport on the energization of bean chloroplast thylakoid membrane].
    Khomutov GB; Tikhonov AN; Ruuge EK
    Mol Biol (Mosk); 1981; 15(1):182-98. PubMed ID: 6278291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of adenine nucleotides with the coupling factor of spinach chloroplasts. A hydrogen-deuterium exchange study.
    Nabedryk-Viala E; Calvet P; Thiéry JM; Galmiche JM; Girault G
    FEBS Lett; 1977 Jul; 79(1):139-43. PubMed ID: 891922
    [No Abstract]   [Full Text] [Related]  

  • 54. [Functions and localization of nucleotide-binding sites of CF1-ATPase using dialdehyde derivatives of ADP and ATP].
    Sytnik SK; Mal'ian AN
    Biokhimiia; 1983 Jun; 48(6):890-6. PubMed ID: 6224516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A delta pH clamp method for analysis of steady-state kinetics of photophosphorylation.
    Strotmann H; Thelen R; Müller W; Baum W
    Eur J Biochem; 1990 Nov; 193(3):879-86. PubMed ID: 2174369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of sulfite on the ATP hydrolysis and synthesis activities in chloroplasts and cyanobacterial membrane vesicles can be explained by competition with phosphate.
    Bakels RH; Van Wielink JE; Krab K; Van Walraven HS
    Arch Biochem Biophys; 1996 Aug; 332(1):170-4. PubMed ID: 8806722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Allosteric properties of CF1-ATPase form chloroplasts].
    Mal'ian AN
    Biokhimiia; 1980 Oct; 45(10):1731-9. PubMed ID: 6453621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness.
    Inoue Y; Kobayashi Y; Shibata K; Heber U
    Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From uni-site to multi-site ATP synthesis in thylakoid membranes.
    Labahn A; Gräber P
    Biochim Biophys Acta; 1993 Sep; 1144(2):170-6. PubMed ID: 8369335
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Interaction of adenine derivatives with chloroplast membranes].
    Sarancha IuP; Mal'ian AN; Makarov AD
    Biokhimiia; 1976 May; 41(5):898-902. PubMed ID: 1024589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.