These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 6257283)

  • 21. The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum.
    Weller M; Laing W
    Biochim Biophys Acta; 1979 Mar; 551(2):406-19. PubMed ID: 217433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions.
    Duggan PF
    J Biol Chem; 1977 Mar; 252(5):1620-7. PubMed ID: 14156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations.
    Le Peuch CJ; Haiech J; Demaille JG
    Biochemistry; 1979 Nov; 18(23):5150-7. PubMed ID: 227448
    [No Abstract]   [Full Text] [Related]  

  • 24. Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation.
    Davis BA; Schwartz A; Samaha FJ; Kranias EG
    J Biol Chem; 1983 Nov; 258(22):13587-91. PubMed ID: 6227613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of adenosine 3':5'-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles.
    Kirchberger MA; Tada M
    J Biol Chem; 1976 Feb; 251(3):725-9. PubMed ID: 175060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties.
    Chamberlain BK; Levitsky DO; Fleischer S
    J Biol Chem; 1983 May; 258(10):6602-9. PubMed ID: 6304048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP
    Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium pump activity of sarcoplasmic reticulum in diabetic rat skeletal muscle.
    Ganguly PK; Mathur S; Gupta MP; Beamish RE; Dhalla NS
    Am J Physiol; 1986 Nov; 251(5 Pt 1):E515-23. PubMed ID: 2430466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system.
    Katz AM; Tada M; Kirchberger MA
    Adv Cyclic Nucleotide Res; 1975; 5():453-72. PubMed ID: 165680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase.
    Tada M; Kirchberger MA; Katz AM
    J Biol Chem; 1975 Apr; 250(7):2640-7. PubMed ID: 235523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic AMP stimulation of membrane phosphorylation and Ca2+-activated, Mg2+-dependent ATPase in cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR
    Biochim Biophys Acta; 1977 Sep; 461(3):441-59. PubMed ID: 197994
    [No Abstract]   [Full Text] [Related]  

  • 32. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterogeneous distribution of calmodulin- and cAMP-dependent regulation of Ca2+ uptake in cardiac sarcoplasmic reticulum subfractions.
    Gasser J; Paganetti P; Carafoli E; Chiesi M
    Eur J Biochem; 1988 Oct; 176(3):535-41. PubMed ID: 2971537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospholamban, the regulator of the cardiac sarcoplasmic reticulum calcium pump, does not copurify with the Ca2+-ATPase enzyme.
    Kranias EG; Nakamura J; Schwartz A
    Biochim Biophys Acta; 1983 Nov; 749(1):62-8. PubMed ID: 6315068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for an effect of phospholamban on the regulatory role of ATP in calcium uptake by the calcium pump of the cardiac sarcoplasmic reticulum.
    Lu YZ; Xu ZC; Kirchberger MA
    Biochemistry; 1993 Mar; 32(12):3105-11. PubMed ID: 8384487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulation of canine cardiac sarcoplasmic reticulum Ca2+ uptake by dihydropyridine Ca2+ antagonists.
    Movsesian MA; Ambudkar IS; Adelstein RS; Shamoo AE
    Biochem Pharmacol; 1985 Jan; 34(2):195-201. PubMed ID: 3155615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent regulation of the cardiac sarcoplasmic reticulum calcium pump: purification and properties of phospholamban, a substrate of cAMP-dependent protein kinase and Ca2+-calmodulin-dependent phospholamban kinase.
    Le Peuch CJ; Le Peuch DA; Demaille JG
    Methods Enzymol; 1983; 102():261-78. PubMed ID: 6316079
    [No Abstract]   [Full Text] [Related]  

  • 40. Calmodulin stimulation of calcium uptake and (Ca2+-Mg2+)-ATPase activities in microsomes from canine tracheal smooth muscle.
    Hogaboom GK; Fedan JS
    Biochem Biophys Res Commun; 1981 Mar; 99(2):737-44. PubMed ID: 6112991
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.