These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6257547)

  • 1. Exploration of the role of sodium in the alpha-adrenergic regulation of hepatic glycogenolysis.
    Hughes BP; Blackmore PF; Exton JH
    FEBS Lett; 1980 Dec; 121(2):260-4. PubMed ID: 6257547
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms involved in alpha-adrenergic effects of catecholamines on liver metabolism.
    Exton JH
    J Cyclic Nucleotide Res; 1979; 5(4):277-87. PubMed ID: 227945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ethacrynic acid on the alpha-adrenergic control ov hepatic glycogenolysis.
    Jakob A; Becker J; Isler N; Diem S
    J Cardiovasc Pharmacol; 1982; 4 Suppl 1():S68-71. PubMed ID: 6175848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of adrenergic receptors in the regulation of glycogen metabolism in the liver].
    Torlińska T; Paluszak J
    Postepy Hig Med Dosw; 1985; 39(5):561-77. PubMed ID: 3014463
    [No Abstract]   [Full Text] [Related]  

  • 5. The alpha adrenergic receptor mediated increase in guinea-pig liver glycogenolysis.
    Osborn D
    Biochem Pharmacol; 1978 May; 27(9):1315-20. PubMed ID: 29649
    [No Abstract]   [Full Text] [Related]  

  • 6. Ca2+, K+ redistributions and alpha-adrenergic activation of glycogenolysis in perfused rat livers.
    Althaus-Salzmann M; Carafoli E; Jakob A
    Eur J Biochem; 1980 May; 106(1):241-8. PubMed ID: 6122568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic regulation of glycogenolysis in rat liver after cholestasis. Modulation of the balance between alpha 1 and beta 2 receptors.
    Aggerbeck M; Ferry N; Zafrani ES; Billon MC; Barouki R; Hanoune J
    J Clin Invest; 1983 Mar; 71(3):476-86. PubMed ID: 6298278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium movements in in situ mitochondria following activation of alpha-adrenergic receptors in rat liver cells.
    Poggioli J; Berthon B; Claret M
    FEBS Lett; 1980 Jun; 115(2):243-6. PubMed ID: 6249640
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence for beta-adrenergic activation of Na+-dependent efflux of Ca2+ from isolated liver mitochondria.
    Goldstone TP; Crompton M
    Biochem J; 1982 Apr; 204(1):369-71. PubMed ID: 7115328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the role of Ca2+ mobilization from intracellular pool(s), using dantrolene, in the glycogenolytic action of alpha-adrenergic stimulation in perfused rat liver.
    Mine T; Kojima I; Kimura S; Ogata E
    Biochim Biophys Acta; 1987 Feb; 927(2):229-34. PubMed ID: 3028492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for alpha adrenergic activation of phosphorylase and inactivation of glycogen synthase in rat adipocytes. Effects of alpha and beta adrenergic agonists and antagonists on glycogen synthase and phosphorylase.
    Lawrence JC; Larner J
    Mol Pharmacol; 1977 Nov; 13(6):1060-75. PubMed ID: 201830
    [No Abstract]   [Full Text] [Related]  

  • 12. The Ca2+-dependent actions of the alpha-adrenergic agonist phenylephrine on hepatic glycogenolysis differ from those of vasopressin and angiotensin.
    Kleineke J; Söling HD
    Eur J Biochem; 1987 Jan; 162(1):143-50. PubMed ID: 3816777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha 1- and alpha 2-adrenoceptor stimulation and Ca fluxes in isolated rat aorta.
    Godfraind T; Miller RC
    Arch Int Pharmacodyn Ther; 1982 Mar; 256(1):171-2. PubMed ID: 6284079
    [No Abstract]   [Full Text] [Related]  

  • 14. Alpha-receptor subsensitivity of isolated atria from rats following repeated injections of phenylephrine or isoprenaline.
    Tirri R; Siltovuori A; Harri M
    Experientia; 1976 Oct; 32(10):1283-5. PubMed ID: 185082
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemical evidence for pharmacological similarities between alpha-adrenoreceptors and voltage-dependent Na+ and Ca++ channels.
    Frelin C; Vigne P; Lazdunski M
    Biochem Biophys Res Commun; 1982 Jun; 106(3):967-73. PubMed ID: 6126191
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver.
    Blackmore PF; Dehaye JP; Exton JH
    J Biol Chem; 1979 Aug; 254(15):6945-50. PubMed ID: 457663
    [No Abstract]   [Full Text] [Related]  

  • 17. Dexfenfluramine modulates hepatic glycogen metabolism by a calcium-dependent pathway.
    Comte B; Romanelli A; Haddad P; van de Werve G
    Can J Physiol Pharmacol; 1997 Jul; 75(7):842-8. PubMed ID: 9315352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin counteraction of alpha-adrenergic effects on liver glycogen metabolism.
    Massagué J; Guinovart JJ
    Biochim Biophys Acta; 1978 Oct; 543(2):269-72. PubMed ID: 103580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclic AMP independent regulation of liver glycogenolysis.
    Keppens S
    Verh K Acad Geneeskd Belg; 1977; 39(4):202-24. PubMed ID: 204122
    [No Abstract]   [Full Text] [Related]  

  • 20. The alpha-adrenergic control of rabbit liver glycogenolysis.
    Proost C; Carton H; De Wulf H
    Biochem Pharmacol; 1979 Jul; 28(14):2187-91. PubMed ID: 227402
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.