These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6257683)

  • 21. Cyanide binding to single-electron-reduced fast cytochrome-c oxidase.
    Moody AJ; Rich PR
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):258S. PubMed ID: 8224410
    [No Abstract]   [Full Text] [Related]  

  • 22. The kinetics of electron entry in cytochrome c oxidase.
    Malatesta F; Antonini G; Sarti P; Vallone B; Brunori M
    Biol Met; 1990; 3(2):118-21. PubMed ID: 1965780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on cytochrome oxidase. IX. Heme-copper interaction.
    Yong FC; King TE
    J Biol Chem; 1972 Oct; 247(20):6384-8. PubMed ID: 4342599
    [No Abstract]   [Full Text] [Related]  

  • 24. The binding of carbon monoxide to cytochrome c oxidase.
    Wever R; Van Drooge JH; Muijsers AO; Bakker EP; Van Gelker BF
    Eur J Biochem; 1977 Feb; 73(1):149-54. PubMed ID: 190007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyanide binding to bovine heart cytochrome c oxidase depleted of subunit III by treatment with lauryl maltoside.
    Hill BC; Robinson NC
    J Biol Chem; 1986 Nov; 261(33):15356-9. PubMed ID: 3023317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Some properties of Nitrosomonas europaea cytochrome c oxidase (aa3-type) which lacks CuA.
    Numata M; Yamazaki T; Fukumori Y; Yamanaka T
    J Biochem; 1989 Feb; 105(2):245-8. PubMed ID: 2542236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and biophysical studies on cytochrome c oxidase. XX. Reaction with sulphide.
    Wever R; van GELDER BF; Dervartanian DV
    Biochim Biophys Acta; 1975 May; 387(2):189-93. PubMed ID: 164940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The oxidation-reduction potentials of the hemes and copper of cytochrome oxidase from beef heart.
    Tsudzuki T; Wilson DF
    Arch Biochem Biophys; 1971 Jul; 145(1):149-54. PubMed ID: 4330764
    [No Abstract]   [Full Text] [Related]  

  • 30. Lipid-protein interactions in cytochrome c oxidase. A comparison of covalently attached phospholipid photo-spin-label with label free to diffuse in the bilayer.
    Griffith OH; McMillen DA; Keana JF; Jost PC
    Biochemistry; 1986 Feb; 25(3):574-84. PubMed ID: 3006763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of 'fast' and 'slow' forms of bovine heart cytochrome-c oxidase.
    Moody AJ; Cooper CE; Rich PR
    Biochim Biophys Acta; 1991 Aug; 1059(2):189-207. PubMed ID: 1653016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EPR evidence for an active form of cytochrome c oxidase different from the resting enzyme.
    Rosén S; Brändén R; Vänngård T; Malmström BG
    FEBS Lett; 1977 Feb; 74(1):25-30. PubMed ID: 190041
    [No Abstract]   [Full Text] [Related]  

  • 33. Heme a and copper environments in cytochrome oxidase.
    Orii Y; Yoshida S; Iizuka T
    Adv Exp Med Biol; 1976; 74():228-39. PubMed ID: 183468
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of high pH on the spectral and catalytic properties of beef heart cytochrome oxidase.
    Baker GM; Palmer G
    Biochemistry; 1987 Jun; 26(11):3038-44. PubMed ID: 3038174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the reaction of cyanide with an oxygenated form of cytochrome oxidase.
    Yoshikawa S; Ueno T; Sai T
    J Biochem; 1977 Nov; 82(5):1361-7. PubMed ID: 201611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of phospholipid depletion on the EPR behavior of cytochrome oxidase.
    Wei YH; King TE
    Arch Biochem Biophys; 1981 Sep; 210(2):653-65. PubMed ID: 6272639
    [No Abstract]   [Full Text] [Related]  

  • 37. Transformation of the CuA redox site in cytochrome c oxidase into a mononuclear copper center.
    Zickermann V; Wittershagen A; Kolbesen BO; Ludwig B
    Biochemistry; 1997 Mar; 36(11):3232-6. PubMed ID: 9116000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-mode EPR spectrometry of O2-pulsed cytochrome c oxidase.
    Hagen WR; Dunham WR; Sands RH; Shaw RW; Beinert H
    Biochim Biophys Acta; 1984 Jun; 765(3):399-402. PubMed ID: 6329275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The possible role of the closed-open transition in proton pumping by cytochrome c oxidase: the pH dependence of cyanide inhibition.
    Thönström PE; Nilsson T; Malmström BG
    Biochim Biophys Acta; 1988 Sep; 935(2):103-8. PubMed ID: 2843226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OXIDATION-REDUCTION OF THE COPPER COMPONENT OF CYTOCHROME OXIDASE. KINETIC STUDIES WITH A RAPID FREEZING TECHNIQUE.
    BEINERT H; PALMER G
    J Biol Chem; 1964 Apr; 239():1221-7. PubMed ID: 14165930
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.