These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 6257684)
1. Regulation of cyclic nucleotide-dependent protein kinase activity by histones and poly(L-arginine). Walton GM; Gill GN J Biol Chem; 1981 Feb; 256(4):1681-8. PubMed ID: 6257684 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the substrate specificity of adenosine 3':5'-monophosphate- and guanosine 3':5'-monophosphate-dependent protein kinases. Kinetic studies using synthetic peptides corresponding to phosphorylation sites in histone H2B. Glass DB; Krebs EG J Biol Chem; 1979 Oct; 254(19):9728-38. PubMed ID: 39929 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the interaction of cyclic nucleotide-dependent protein kinases with mononucleosomes and free histones. Walton GM; Gill GN Biochim Biophys Acta; 1981 Dec; 656(2):155-9. PubMed ID: 6274407 [TBL] [Abstract][Full Text] [Related]
4. Self-phosphorylation of cyclic guanosine 3':5'-monophosphate-dependent protein kinase from bovine lung. Effect of cyclic adenosine 3':5'-monophosphate, cyclic guanosine 3':5'-monophosphate and histone. de Jonge HR; Rosen OM J Biol Chem; 1977 Apr; 252(8):2780-3. PubMed ID: 192721 [TBL] [Abstract][Full Text] [Related]
5. Differential and common recognition of the catalytic sites of the cGMP-dependent and cAMP-dependent protein kinases by inhibitory peptides derived from the heat-stable inhibitor protein. Glass DB; Cheng HC; Kemp BE; Walsh DA J Biol Chem; 1986 Sep; 261(26):12166-71. PubMed ID: 3017964 [TBL] [Abstract][Full Text] [Related]
6. Synthetic peptide analogues differentially alter the binding affinities of cyclic nucleotide dependent protein kinases for nucleotide substrates. Bhatnagar D; Glass DB; Roskoski R; Lessor RA; Leonard NJ Biochemistry; 1988 Mar; 27(6):1988-94. PubMed ID: 2837278 [TBL] [Abstract][Full Text] [Related]
7. Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-1). Lincoln TM; Corbin JD J Biol Chem; 1978 Jan; 253(2):337-9. PubMed ID: 201627 [TBL] [Abstract][Full Text] [Related]
8. Comparison of cyclic nucleotide specificity of guanosine 3',5'-monophosphate-dependent protein kinase and adenosine 3',5'-monophosphate-dependent protein kinase. Khoo JC; Gill GN Biochim Biophys Acta; 1979 Apr; 584(1):21-32. PubMed ID: 221047 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation by guanosine 3':5'-monophosphate-dependent protein kinase of synthetic peptide analogs of a site phosphorylated in histone H2B. Glass DB; Krebs EG J Biol Chem; 1982 Feb; 257(3):1196-200. PubMed ID: 6276376 [TBL] [Abstract][Full Text] [Related]
10. The in vitro phosphorylation of chromatin by the catalytic subunit of cAMP-dependent protein kinase. Taylor SS J Biol Chem; 1982 Jun; 257(11):6056-63. PubMed ID: 7076664 [TBL] [Abstract][Full Text] [Related]
11. Bovine lung cyclic GMP-dependent protein kinase exhibits two types of specific cyclic GMP-binding sites. Mackenzie CW J Biol Chem; 1982 May; 257(10):5589-93. PubMed ID: 6279606 [TBL] [Abstract][Full Text] [Related]
12. Structural basis for the low affinities of yeast cAMP-dependent and mammalian cGMP-dependent protein kinases for protein kinase inhibitor peptides. Glass DB; Feller MJ; Levin LR; Walsh DA Biochemistry; 1992 Feb; 31(6):1728-34. PubMed ID: 1310617 [TBL] [Abstract][Full Text] [Related]
13. Activation of protein kinase C by selective binding of arginine-rich polypeptides. Leventhal PS; Bertics PJ J Biol Chem; 1993 Jul; 268(19):13906-13. PubMed ID: 8390981 [TBL] [Abstract][Full Text] [Related]
14. Affinity labeling of the ATP binding site of bovine lung cyclic GMP-dependent protein kinase with 5'-p-fluorosulfonylbenzoyladenosine. Hixson CS; Krebs EG J Biol Chem; 1981 Feb; 256(3):1122-7. PubMed ID: 6256383 [TBL] [Abstract][Full Text] [Related]
15. Studies on the sites in histones phosphorylated by adenosine 3':5'-monophosphate-dependent and guanosine 3':5'-monophosphate-dependent protein kinases. Hashimoto E; Takeda M; Nishizuka Y; Hamana K; Iwai K J Biol Chem; 1976 Oct; 251(20):6287-93. PubMed ID: 185207 [TBL] [Abstract][Full Text] [Related]
16. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A. Miranda TB; Sayegh J; Frankel A; Katz JE; Miranda M; Clarke S Biochem J; 2006 May; 395(3):563-70. PubMed ID: 16426232 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of cardiac troponin by guanosine 3':5'-monophosphate-dependent protein kinase. Blumenthal DK; Stull JT; Gill GN J Biol Chem; 1978 Jan; 253(2):324-6. PubMed ID: 201626 [TBL] [Abstract][Full Text] [Related]
18. Regulatory subunit of the type I cAMP-dependent protein kinase as an inhibitor and substrate of the cGMP-dependent protein kinase. Geahlen RL; Krebs EG J Biol Chem; 1980 Feb; 255(3):1164-9. PubMed ID: 6243294 [TBL] [Abstract][Full Text] [Related]
19. Intrinsic activity of guanosine 3',5'-monophosphate-dependent protein kinase similar to adenosine 3',5'-monophosphate-dependent protein kinase. I. Phosphorylation of histone fractions. Yamamoto M; Takai Y; Hashimoto E; Nishizuka Y J Biochem; 1977 Jun; 81(6):1857-62. PubMed ID: 197069 [TBL] [Abstract][Full Text] [Related]
20. Manifold effects of sodium butyrate on nuclear function. Selective and reversible inhibition of phosphorylation of histones H1 and H2A and impaired methylation of lysine and arginine residues in nuclear protein fractions. Boffa LC; Gruss RJ; Allfrey VG J Biol Chem; 1981 Sep; 256(18):9612-21. PubMed ID: 6270094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]