BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6258583)

  • 1. The nature of the sulphur atom liberated from xanthine oxidase by cyanide. Evidence from e.p.r. spectroscopy after 35S substitution.
    Malthouse JP; Bray RC
    Biochem J; 1980 Oct; 191(1):265-7. PubMed ID: 6258583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of [33S]sulphur to molybdenum(V) in different reduced forms of xanthine oxidase.
    Malthouse JP; George GN; Lowe DJ; Bray RC
    Biochem J; 1981 Dec; 199(3):629-37. PubMed ID: 6280672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the molybdenum centres of native and desulpho xanthine oxidase. The nature of the cyanide-labile sulphur atom and the nature of the proton-accepting group.
    Gutteridge S; Tanner SJ; Bray RC
    Biochem J; 1978 Dec; 175(3):887-97. PubMed ID: 217354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d]pyrimidine-4,6-diol) with the molybdenum centre of xanthine oxidase from electron-paramagnetic-resonance spectroscopy.
    Hawkes TR; George GN; Bray RC
    Biochem J; 1984 Mar; 218(3):961-8. PubMed ID: 6326752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid type 2 molybdenum(V) electron-paramagnetic resonance signals from xanthine oxidase and the structure of the active centre of the enzyme.
    Malthouse JP; Gutteridge S; Bray RC
    Biochem J; 1980 Mar; 185(3):767-70. PubMed ID: 6248034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases.
    Wahl RC; Rajagopalan KV
    J Biol Chem; 1982 Feb; 257(3):1354-9. PubMed ID: 6276383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the origin of the cyanolysable sulphur in molybdenum iron/sulphur flavin hydroxylases.
    Coughlan MP
    FEBS Lett; 1977 Sep; 81(1):1-6. PubMed ID: 902762
    [No Abstract]   [Full Text] [Related]  

  • 11. The mechanism of action of xanthine oxidase. The relationship between the rapid and very rapid molybdenum electron-paramagnetic-resonance signals.
    Bray RC; Gutteridge S; Stotter DA; Tanner SJ
    Biochem J; 1979 Jan; 177(1):357-60. PubMed ID: 218562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies by electron paramagnetic resonance spectroscopy of xanthine oxidase enriched with molybdenum-95 and with molybdenum-97.
    George GN; Bray RC
    Biochemistry; 1988 May; 27(10):3603-9. PubMed ID: 2841971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-spin interaction between molybdenum and one of the iron-sulphur systems of xanthine oxidase and its relevance to the enzymic mechanism.
    Lowe DJ; Lynden-Bell RM; Bray RC
    Biochem J; 1972 Nov; 130(1):239-49. PubMed ID: 4347785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molybdenum(V) e.p.r. signals obtained from xanthine oxidase on reduction with aldehyde substrates and with 2-amino-4-hydroxy-6-formylpteridine.
    Malthouse JP; Williams JW; Bray RC
    Biochem J; 1981 Aug; 197(2):421-5. PubMed ID: 6275833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopy of xanthine oxidase. The molybdenum centres of the functional and the desulpho forms.
    Bordas J; Bray RC; Garner CD; Gutteridge S; Hasnain SS
    Biochem J; 1980 Nov; 191(2):499-508. PubMed ID: 6894537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
    Cammack R; Barber MJ; Bray RC
    Biochem J; 1976 Aug; 157(2):469-78. PubMed ID: 183752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formamide as a substrate of xanthine oxidase.
    Morpeth FF; George GN; Bray RC
    Biochem J; 1984 May; 220(1):235-42. PubMed ID: 6331408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of molybdenum-sulphur compounds with cyanide: chemical evolution and deactivation of molybdoenzymes.
    Mitchell PC; Pygall CF
    J Inorg Biochem; 1979 Aug; 11(1):25-9. PubMed ID: 479877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.