These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6258690)

  • 41. Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium.
    Braga MF; Anderson AJ; Harvey AL; Rowan EG
    Br J Pharmacol; 1992 May; 106(1):91-4. PubMed ID: 1324070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuromuscular transmission and correlative morphology in young and old mice.
    Banker BQ; Kelly SS; Robbins N
    J Physiol; 1983 Jun; 339():355-77. PubMed ID: 6310088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Observations on the action of type A botulinum toxin on frog neuromuscular junctions.
    Boroff DA; del Castillo J; Evoy WH; Steinhardt RA
    J Physiol; 1974 Jul; 240(2):227-53. PubMed ID: 4371582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Presynaptic and postsynaptic effects of the venom of the Australian tiger snake at the neuromuscular junction.
    Datyner ME; Gage PW
    Br J Pharmacol; 1973 Oct; 49(2):340-54. PubMed ID: 4367126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subunit composition and pharmacological characterization of gamma-aminobutyric acid type A receptors in frog pituitary melanotrophs.
    Louiset E; McKernan R; Sieghart W; Vaudry H
    Endocrinology; 2000 Mar; 141(3):1083-92. PubMed ID: 10698184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus.
    Doze VA; Cohen GA; Madison DV
    J Neurophysiol; 1995 Jul; 74(1):43-53. PubMed ID: 7472344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. gamma-Aminobutyric acidB receptors mediate inhibition of somatostatin release from cerebrocortex nerve terminals.
    Bonanno G; Gemignani A; Fedele E; Fontana G; Raiteri M
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1153-7. PubMed ID: 1684816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals.
    Landau EM
    J Physiol; 1969 Aug; 203(2):281-99. PubMed ID: 4307709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord.
    Barker JL; Nicoll RA
    J Physiol; 1973 Jan; 228(2):259-77. PubMed ID: 4346988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neurosteroid modulation of synaptic and GABA-evoked currents in neurons from the rat medial preoptic nucleus.
    Haage D; Johansson S
    J Neurophysiol; 1999 Jul; 82(1):143-51. PubMed ID: 10400943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-localization of tyrosine hydroxylase, GABA and neuropeptide Y within axon terminals innervating the intermediate lobe of the frog Rana ridibunda.
    Tonon MC; Bosler O; Stoeckel ME; Pelletier G; Tappaz M; Vaudry H
    J Comp Neurol; 1992 May; 319(4):599-605. PubMed ID: 1377715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GABA release provoked by disturbed Na(+), K(+) and Ca(2+) homeostasis in cerebellar nerve endings: roles of Ca(2+) channels, Na(+)/Ca(2+) exchangers and GAT1 transporter reversal.
    Romei C; Sabolla C; Raiteri L
    Neurochem Int; 2014 Jun; 72():1-9. PubMed ID: 24726769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological and anatomical characteristics of reticulospinalneurones in lamprey.
    Wickelgren WO
    J Physiol; 1977 Aug; 270(1):89-114. PubMed ID: 915826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons.
    Wang YF; Gao XB; van den Pol AN
    J Neurophysiol; 2001 Sep; 86(3):1252-65. PubMed ID: 11535674
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    Br J Pharmacol; 1997 Nov; 122(6):1025-34. PubMed ID: 9401765
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine.
    Hirai K; Koketsu K
    Br J Pharmacol; 1980 Nov; 70(3):499-500. PubMed ID: 6969102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Differences in activation of the motoneurone inhibitory receptors in a frog Rana ridibunda by GABA and glycine and their interaction].
    Kalinina NI; Kurchavyĭ GG; Amakhin DV; Veselkin NP
    Ross Fiziol Zh Im I M Sechenova; 2008 Sep; 94(9):1005-16. PubMed ID: 18953991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An endplate potential due to potassium released by the motor nerve impulse.
    Katz B; Miledi R
    Proc R Soc Lond B Biol Sci; 1982 Nov; 216(1205):497-507. PubMed ID: 6129640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pre-embedding staining for GAD67 versus postembedding staining for GABA as markers for central GABAergic terminals.
    Murphy SM; Pilowsky PM; Llewellyn-Smith IJ
    J Histochem Cytochem; 1998 Nov; 46(11):1261-8. PubMed ID: 9774625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.