These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6258726)

  • 21. Electron microscopic identification of axon terminals of retinopretectal fibers in the cat by a combined horseradish peroxidase and tritiated amino acids tracing method.
    Nakamura Y; Mizuno N; Konishi A
    Brain Res; 1981 May; 212(1):127-30. PubMed ID: 7225848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys.
    Cheema SS; Rustioni A; Whitsel BL
    J Comp Neurol; 1984 May; 225(2):276-90. PubMed ID: 6547152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segregation of muscle and cutaneous afferent fibre terminals in the brachial spinal cord of the frog.
    Székely G; Antal M
    J Hirnforsch; 1984; 25(6):671-5. PubMed ID: 6335516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine structure of primary afferent axon terminals of slowly adapting cutaneous receptors in the cat.
    Bannatyne BA; Maxwell DJ; Fyffe RE; Brown AG
    Q J Exp Physiol; 1984 Jul; 69(3):547-57. PubMed ID: 6473695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for spinal origin of neurons synapsing with dorsal root ganglion cells of the cat.
    Kayahara T; Sakashita S; Takimoto T
    Brain Res; 1984 Feb; 293(2):225-30. PubMed ID: 6697216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct connections of primary afferent fibers with central cervical nucleus neurons projecting to the cerebellum in the cat.
    Takahashi O; Takeuchi Y; Matsushima R
    Brain Res; 1985 Mar; 328(2):390-5. PubMed ID: 3986535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapidly adapting pulmonary receptor afferents: II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):574-94. PubMed ID: 2464625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.
    Maxwell DJ; Koerber HR; Bannatyne BA
    Neuroscience; 1985 Oct; 16(2):375-94. PubMed ID: 4080161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The development of receptors in the glabrous forepaw skin of pouch young opossums.
    Brenowitz GL; Tweedle CD; Johnson JI
    Neuroscience; 1980; 5(7):1303-10. PubMed ID: 7402470
    [No Abstract]   [Full Text] [Related]  

  • 31. Evidence for the existence of a projection from the dorsal column nuclei to the substantia nigra in the cat.
    Usunoff KG; Paloff AM
    J Hirnforsch; 1992; 33(4-5):445-9. PubMed ID: 1282531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic junctions in the cat spinal ganglion.
    Kayahara T; Takimoto T; Sakashita S
    Brain Res; 1981 Jul; 216(2):277-90. PubMed ID: 7248779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrastructural identification of dorsal root primary afferent terminals after anterograde filling with horseradish peroxidase.
    Beattie MS; Bresnahan JC; King JS
    Brain Res; 1978 Sep; 153(1):127-34. PubMed ID: 79439
    [No Abstract]   [Full Text] [Related]  

  • 34. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: biochemical, histochemical, and experimental studies at the light and electron microscopic level.
    Arvidsson U; Ulfhake B; Cullheim S; Bergstrand A; Theodorson E; Hökfelt T
    J Comp Neurol; 1991 Jun; 308(1):115-38. PubMed ID: 1714921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology and organization of axon collaterals from afferent fibres of slowly adapting type I units in cat spinal cord.
    Brown AG; Rose PK; Snow PJ
    J Physiol; 1978 Apr; 277():15-27. PubMed ID: 650514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of cutaneous afferent pathways in fetal sheep: a structural and functional study.
    Rees S; Nitsos I; Rawson J
    Brain Res; 1994 Oct; 661(1-2):207-22. PubMed ID: 7834372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat.
    McLean JH; Hopkins DA
    J Comp Neurol; 1981 Jan; 195(1):157-75. PubMed ID: 7204650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HRP anatomy of group Ia afferent contacts on alpha motoneurones.
    Burke RE; Walmsley B; Hodgson JA
    Brain Res; 1979 Jan; 160(2):347-52. PubMed ID: 761069
    [No Abstract]   [Full Text] [Related]  

  • 39. Dendroaxonic synapses in the substantia gelatinosa glomeruli of the spinal trigeminal nucleus of the cat.
    Gobell S
    J Comp Neurol; 1976 May; 167(2):165-76. PubMed ID: 932238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology of cutaneous receptors.
    Iggo A; Andres KH
    Annu Rev Neurosci; 1982; 5():1-31. PubMed ID: 6280572
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.