These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Isolation and characterization of a manganese-containing superoxide dismutase from yeast. Ravindranath SD; Fridovich I J Biol Chem; 1975 Aug; 250(15):6107-12. PubMed ID: 238997 [TBL] [Abstract][Full Text] [Related]
7. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. Martin ME; Byers BR; Olson MO; Salin ML; Arceneaux JE; Tolbert C J Biol Chem; 1986 Jul; 261(20):9361-7. PubMed ID: 3722201 [TBL] [Abstract][Full Text] [Related]
8. A new iron-containing superoxide dismutase from Escherichia coli. Dougherty HW; Sadowski SJ; Baker EE J Biol Chem; 1978 Jul; 253(14):5220-3. PubMed ID: 353048 [TBL] [Abstract][Full Text] [Related]
9. Superoxide dismutases. Fridovich I Annu Rev Biochem; 1975; 44():147-59. PubMed ID: 1094908 [No Abstract] [Full Text] [Related]
10. Superoxide dismutases: defence against endogenous superoxide radical. Fridovich I Ciba Found Symp; 1978 Jun 6-8; (65):77-93. PubMed ID: 225147 [TBL] [Abstract][Full Text] [Related]
11. Determination of metal content in superoxide dismutase enzymes by capillary electrophoresis†. Kazarjan J; Vaher M; Hunter T; Kulp M; Hunter GJ; Bonetta R; Farrugia D; Kaljurand M J Sep Sci; 2015 Mar; 38(6):1042-5. PubMed ID: 25581166 [TBL] [Abstract][Full Text] [Related]
12. Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels. Stallings WC; Powers TB; Pattridge KA; Fee JA; Ludwig ML Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3884-8. PubMed ID: 6346322 [TBL] [Abstract][Full Text] [Related]
13. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi. Lavelle F; McAdam ME; Fielden EM; Roberts PB Biochem J; 1977 Jan; 161(1):3-11. PubMed ID: 15540 [TBL] [Abstract][Full Text] [Related]
15. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255 [TBL] [Abstract][Full Text] [Related]
16. Purification and properties of a unique superoxide dismutase from Nocardia asteroides. Beaman BL; Scates SM; Moring SE; Deem R; Misra HP J Biol Chem; 1983 Jan; 258(1):91-6. PubMed ID: 6336758 [TBL] [Abstract][Full Text] [Related]
17. Identification of iron superoxide dismutase and a copper/zinc superoxide dismutase enzyme activity within the marine cyanobacterium Synechococcus sp. WH 7803. Chadd HE; Newman J; Mann NH; Carr NG FEMS Microbiol Lett; 1996 May; 138(2-3):161-5. PubMed ID: 9026442 [TBL] [Abstract][Full Text] [Related]
18. Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli. Hassan HM; Schrum LW FEMS Microbiol Rev; 1994 Aug; 14(4):315-23. PubMed ID: 7917419 [TBL] [Abstract][Full Text] [Related]
19. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Fridovich I Photochem Photobiol; 1978; 28(4-5):733-41. PubMed ID: 216032 [No Abstract] [Full Text] [Related]
20. A hybrid superoxide dismutase containing both functional iron and manganese. Clare DA; Blum J; Fridovich I J Biol Chem; 1984 May; 259(9):5932-6. PubMed ID: 6371011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]