These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6259142)

  • 1. High resolution experimental and theoretical thermal denaturation studies on small overlapping restriction fragments containing the Escherichia coli lactose genetic control region.
    Hillen W; Goodman TC; Benight AS; Wartell RM; Wells RD
    J Biol Chem; 1981 Mar; 256(6):2761-6. PubMed ID: 6259142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution thermal denaturation analyses of small sequenced DNA restriction fragments containing Escherichia coli lactose genetic control loci.
    Hardies SC; Hillen W; Goodman TC; Wells RD
    J Biol Chem; 1979 Oct; 254(20):10128-34. PubMed ID: 385595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependence and thermodynamic interpretation of the thermal denaturation of small DNA restriction fragments.
    Hillen W; Goodman TC; Wells RD
    Nucleic Acids Res; 1981 Jan; 9(2):415-36. PubMed ID: 6259627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory agrees with experimental thermal denaturation of short DNA restriction fragments.
    Benight AS; Wartell RM; Howell DK
    Nature; 1981 Jan; 289(5794):203-5. PubMed ID: 6256654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of neighboring DNA homopolymers on the biochemical and physical properties of the Escherichia coli lactose promoter. III. High resolution thermal denaturation and circular dichroism studies.
    Goodman TC; Klein RD; Wells RD
    J Biol Chem; 1982 Nov; 257(21):12970-8. PubMed ID: 6752145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of large amounts of restriction fragments containing the E. coli lac control elements.
    Hardies SC; Wells RD
    Gene; 1979 Sep; 7(1):1-14. PubMed ID: 387526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of thermodynamic and genetic properties in the Tn10 encoded TET gene control region.
    Hillen W; Unger B
    Nucleic Acids Res; 1982 Apr; 10(8):2685-700. PubMed ID: 6281740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catabolite activator protein stabilizes its binding site in the E. coli lactose promoter.
    DeGrazia H; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1985 Oct; 13(20):7483-98. PubMed ID: 3903664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
    Winter RB; Berg OG; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism studies of the B goes to A conformational transition in seven small DNA restriction fragments containing the Escherichia coli lactose control region.
    Hillen W; Wells RD
    Nucleic Acids Res; 1980 Nov; 8(22):5427-44. PubMed ID: 6258144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point mutations change the thermal denaturation profile of a short DNA fragment containing the lactose control elements. Comparison between experiment and theory.
    Schaeffer F; Kolb A; Buc H
    EMBO J; 1982; 1(1):99-105. PubMed ID: 7188180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of tet operator-TET repressor complexes by thermal denaturation studies.
    Hillen W; Unger B; Klock G
    Nucleic Acids Res; 1982 Oct; 10(19):6085-97. PubMed ID: 6292866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific sequences downstream from -6 are not essential for proper and efficient in vitro utilization of the Escherichia coli lactose promoter.
    Lorimer DD; Cao JL; Revzin A
    J Mol Biol; 1990 Nov; 216(2):275-87. PubMed ID: 2254929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of E.coli lac repressor to non-operator DNA.
    Wang AC; Revzin A; Butler AP; von Hippel PH
    Nucleic Acids Res; 1977; 4(5):1579-93. PubMed ID: 331259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion analysis of the CAP-cAMP binding site of the Escherichia coli lactose promoter.
    Yu XM; Reznikoff WS
    Nucleic Acids Res; 1984 Jul; 12(13):5449-64. PubMed ID: 6087287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of neighboring DNA homopolymers on the biochemical and physical properties of the Escherichia coli lactose promoter. I. Cloning and characterization studies.
    Klein RD; Wells RD
    J Biol Chem; 1982 Nov; 257(21):12954-61. PubMed ID: 6290487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding of cyclic AMP receptor protein to two lactose promoter sites is not cooperative in vitro.
    Hudson JM; Fried MG
    J Bacteriol; 1991 Jan; 173(1):59-66. PubMed ID: 1987134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity effects in the lactose operon of Escherichia coli.
    Li Y; Altman S
    J Mol Biol; 2004 May; 339(1):31-9. PubMed ID: 15123418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription.
    Czarniecki D; Noel RJ; Reznikoff WS
    J Bacteriol; 1997 Jan; 179(2):423-9. PubMed ID: 8990294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new DNA binding mode for CAP.
    Hudson JM; Crowe LG; Fried MG
    J Biol Chem; 1990 Feb; 265(6):3219-25. PubMed ID: 2406249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.