BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6259368)

  • 1. GABA uptake in astrocytes in primary cultures: coupling with two sodium ions.
    Larsson OM; Hertz L; Schousboe A
    J Neurosci Res; 1980; 5(6):469-77. PubMed ID: 6259368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion dependency of uptake and release of GABA and (RS)-nipecotic acid studied in cultured mouse brain cortex neurons.
    Larsson OM; Drejer J; Hertz L; Schousboe A
    J Neurosci Res; 1983; 9(3):291-302. PubMed ID: 6854668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between (RS)-nipecotic acid and GABA transport in cultured astrocytes: coupling with two sodium ions.
    Larsson OM; Schousboe A
    Neurochem Res; 1981 Mar; 6(3):257-66. PubMed ID: 7279105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex.
    Wu Q; Wada M; Shimada A; Yamamoto A; Fujita T
    Brain Res; 2006 Feb; 1075(1):100-9. PubMed ID: 16466645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of glutamate, GABA, and glutamine into a predominantly GABA-ergic and a predominantly glutamatergic nerve cell population in culture.
    Yu AC; Hertz L
    J Neurosci Res; 1982; 7(1):23-35. PubMed ID: 6121917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of GABA transport by cortical synaptosomes from the Long-Evans rat.
    Wheeler DD; Hollingsworth RG
    J Neurosci Res; 1979; 4(4):265-89. PubMed ID: 469963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs.
    White HS; Sarup A; Bolvig T; Kristensen AS; Petersen G; Nelson N; Pickering DS; Larsson OM; Frølund B; Krogsgaard-Larsen P; Schousboe A
    J Pharmacol Exp Ther; 2002 Aug; 302(2):636-44. PubMed ID: 12130726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of GABA by neuronal and nonneuronal cells in dispersed cell cultures of postnatal rat cerebellum.
    Lasher RS
    J Neurobiol; 1975 Nov; 6(6):597-608. PubMed ID: 1237537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of GABA and nipecotic acid in astrocytes and neurons in primary cultures: changes in the sodium coupling ratio during differentiation.
    Larsson OM; Hertz L; Schousboe A
    J Neurosci Res; 1986; 16(4):699-708. PubMed ID: 3025461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Tityus serrulatus scorpion venom and its toxin TsTX-V on neurotransmitter uptake in vitro.
    Cecchini AL; Vasconcelos F; Amara SG; Giglio JR; Arantes EC
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):196-203. PubMed ID: 17049577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of valproate, vigabatrin and tiagabine on GABA uptake into human astrocytes cultured from foetal and adult brain tissue.
    Fraser CM; Sills GJ; Butler E; Thompson GG; Lindsay K; Duncan R; Howatson A; Brodie MJ
    Epileptic Disord; 1999 Sep; 1(3):153-7. PubMed ID: 10937147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of gamma-aminobutyric acid in early neuronal development: studies with an embryonic neuroectodermal stem cell clone.
    Jelitai M; Anderová M; Markó K; Kékesi K; Koncz P; Syková E; Madarász E
    J Neurosci Res; 2004 Jun; 76(6):801-11. PubMed ID: 15160392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types.
    Larsson OM; Griffiths R; Allen IC; Schousboe A
    J Neurochem; 1986 Aug; 47(2):426-32. PubMed ID: 3090200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures.
    Larsson OM; Johnston GA; Schousboe A
    Brain Res; 1983 Feb; 260(2):279-85. PubMed ID: 6299459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system.
    Fujita T; Katsukawa H; Yodoya E; Wada M; Shimada A; Okada N; Yamamoto A; Ganapathy V
    J Neurochem; 2005 May; 93(3):706-14. PubMed ID: 15836629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium transport in astrocytes.
    Walz W; Hertz L
    J Neurosci Res; 1984; 11(3):231-9. PubMed ID: 6737516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for net uptake of GABA into mouse astrocytes in primary cultures--its sodium dependence and potassium independence.
    Hertz L; Wu PH; Schousboe A
    Neurochem Res; 1978 Jun; 3(3):313-23. PubMed ID: 745651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6J and epileptic DBA/2J mouse brain cortices.
    Laschet J; Grisar T; Bureau M; Guillaume D
    Neuroscience; 1992; 48(1):151-7. PubMed ID: 1584419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.