These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 6260156)
1. The effects of Ca2+ and guanylnucleotides on isoprenaline-stimulated cyclic AMP formation in rat reticulocyte ghosts. Porzig H; Schneider M; Makulska HE Biochim Biophys Acta; 1980 Dec; 633(3):331-46. PubMed ID: 6260156 [TBL] [Abstract][Full Text] [Related]
2. The beta-adrenergic receptor-adenyl-cyclase system of rat reticulocytes: effects of adrenergic stimulants and inhibitors. Gauger D; Kaiser G; Quiring K; Palm D Naunyn Schmiedebergs Arch Pharmacol; 1975; 289(4):379-98. PubMed ID: 240135 [TBL] [Abstract][Full Text] [Related]
3. Cyclic AMP-dependent protein kinases and binding sites for cyclic AMP in rat erythrocytes. Quiring K; Kaiser G; Gauger D; Palm D Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(4):397-417. PubMed ID: 172804 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of the beta-adrenergic adenylate cyclase system of developing rabbit bone-marrow erythroblasts. Setchenska MS; Arnstein HR Biochem J; 1983 Feb; 210(2):559-66. PubMed ID: 6860310 [TBL] [Abstract][Full Text] [Related]
5. Calmodulin-dependent adenylate cyclase activity in rat cerebral cortex: effects of divalent cations, forskolin and isoprenaline. Mørk A; Geisler A Arch Int Physiol Biochim; 1989 Jun; 97(3):259-71. PubMed ID: 2482716 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of action of extracellular calcium on isoprenaline-evoked amylase secretion from isolated rat parotid glands. Argent BE; Arkle S J Physiol; 1985 Dec; 369():337-53. PubMed ID: 2419548 [TBL] [Abstract][Full Text] [Related]
7. Control of cyclic AMP levels in primary cultures of human tracheal smooth muscle cells. Hall IP; Widdop S; Townsend P; Daykin K Br J Pharmacol; 1992 Oct; 107(2):422-8. PubMed ID: 1384913 [TBL] [Abstract][Full Text] [Related]
8. A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes. Schramm M; Rodbell M J Biol Chem; 1975 Mar; 250(6):2232-7. PubMed ID: 163823 [TBL] [Abstract][Full Text] [Related]
9. Metabolic effects of (-)-isoprenaline stimulation of adenylate cyclase in reticulocytes. Kostic MM; Müller M; Maretzki D; Krause EG; Rapoport SM Biomed Biochim Acta; 1986; 45(8):973-83. PubMed ID: 2430561 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte 'ghosts'. A study using the photoprotein obelin. Campbell AK; Dormer RL Biochem J; 1978 Oct; 176(1):53-66. PubMed ID: 215135 [TBL] [Abstract][Full Text] [Related]
13. Reduction in the stability of the Gs-catalytic unit complex of adenylate cyclase in isoproterenol-induced heterologous desensitization. Yamashita A; Kurokawa T; Une Y; Ishibashi S Eur J Pharmacol; 1989 Jan; 159(3):247-56. PubMed ID: 2537737 [TBL] [Abstract][Full Text] [Related]
14. Activation of adenylate cyclase in bovine corpus-luteum membranes by human choriogonadotropin, guanine nucleotides and NaF. Lydon NB; Young JL; Stansfield DA Biochem J; 1981 Sep; 198(3):631-8. PubMed ID: 7326028 [TBL] [Abstract][Full Text] [Related]
15. Slow GDP dissociation from the guanyl nucleotide-binding site of turkey erythrocyte membranes as the limiting step in the activation of adenylate cyclase by beta-adrenergic agonists. Swillens S; Juvent M; Dumont JE FEBS Lett; 1979 Dec; 108(2):365-8. PubMed ID: 230088 [No Abstract] [Full Text] [Related]
16. Beta 1-adrenergic selectivity of the new cardiotonic agent denopamine in its stimulating effects on adenylate cyclase. Inamasu M; Totsuka T; Ikeo T; Nagao T; Takeyama S Biochem Pharmacol; 1987 Jun; 36(12):1947-54. PubMed ID: 3036156 [TBL] [Abstract][Full Text] [Related]
17. Demonstration of adenylate cyclase activity in human red blood cell ghosts. Rodan SB; Rodan GA; Sha'afi RI Biochim Biophys Acta; 1976 Apr; 428(2):509-15. PubMed ID: 179579 [TBL] [Abstract][Full Text] [Related]
18. Regulation of catecholamine-responsive adenylate cyclase activity in rat reticulocyte membranes by endogenous factors: general characteristics and resolution into protein and nucleotide components. Omrani GR; Gammon DE; Bilezikian JP Biochim Biophys Acta; 1980 May; 629(3):455-69. PubMed ID: 7417506 [TBL] [Abstract][Full Text] [Related]
19. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes. Ugur O; Onaran HO Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611 [TBL] [Abstract][Full Text] [Related]
20. Correlation between isoprenaline-stimulated synthesis of cyclic AMP and occurrence of beta-adrenoreceptors in immature erythrocytes from rats. Kaiser G; Wiemer G; Kremer G; Dietz J; Hellwich M; Palm D Eur J Pharmacol; 1978 Apr; 48(3):255-62. PubMed ID: 205423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]