These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6260726)

  • 1. Mechanism of nitrite-induced germination of Clostridium perfringens spores.
    Ando Y
    J Appl Bacteriol; 1980 Dec; 49(3):527-35. PubMed ID: 6260726
    [No Abstract]   [Full Text] [Related]  

  • 2. Sensitivity of chemically treated spores of Clostridium perfringens type A to an initiation protein.
    Franceschini TJ; Labbe RG
    Microbios; 1979; 25(100):85-91. PubMed ID: 232233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the increased sensitivity of heat injured Clostridium perfringens spores to surface active antibiotics and to sodium chloride and sodium nitrite.
    Chumney RK; Adams DM
    J Appl Bacteriol; 1980 Aug; 49(1):55-63. PubMed ID: 6253431
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of cations on lysozyme-induced germination of coatless spores of Clostridium perfringens 8-6.
    Sacks LE
    Biochim Biophys Acta; 1981 Apr; 674(1):118-27. PubMed ID: 6263345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration in ultrastructure and germination of Clostridium perfringens type A spores following extraction of spore coats.
    Labbe RG; Reich RR; Duncan CL
    Can J Microbiol; 1978 Dec; 24(12):1526-36. PubMed ID: 218713
    [No Abstract]   [Full Text] [Related]  

  • 6. Growth from spores of Clostridium perfringens in the presence of sodium nitrite.
    Labbe RG; Duncan CL
    Appl Microbiol; 1970 Feb; 19(2):353-9. PubMed ID: 4314380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling.
    Redondo-Solano M; Valenzuela-Martinez C; Cassada DA; Snow DD; Juneja VK; Burson DE; Thippareddi H
    Food Microbiol; 2013 Sep; 35(2):108-15. PubMed ID: 23664261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lysozyme on ionic forms of spores of Clostridium perfringens type A.
    Ando Y
    J Bacteriol; 1975 May; 122(2):794-5. PubMed ID: 236284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of heat-injured spores of Clostridium perfringens types B, C and D by lysozyme and an initiation protein.
    Labbé RG; Chang CA
    Lett Appl Microbiol; 1995 Nov; 21(5):302-6. PubMed ID: 7576525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization by ethylenediaminetetraacetate of Clostridium perfringens type A spores to germination by lysozyme.
    Adams DM
    J Bacteriol; 1973 Oct; 116(1):500-2. PubMed ID: 4355485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System for evaluating clostridial inhibition in cured meat products.
    Robach MC; Ivey FJ; Hickey CS
    Appl Environ Microbiol; 1978 Jul; 36(1):210-1. PubMed ID: 211934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and injury of Clostridium perfringens spores by alcohols.
    Craven SE; Blankenship LC
    Appl Environ Microbiol; 1985 Aug; 50(2):249-56. PubMed ID: 2864897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Clostridium perfringens by heated combinations of nitrite, sulfur, and ferrous or ferric ions.
    Asan T; Solberg M
    Appl Environ Microbiol; 1976 Jan; 31(1):49-52. PubMed ID: 8004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene.
    Chen Y; Miyata S; Makino S; Moriyama R
    J Bacteriol; 1997 May; 179(10):3181-7. PubMed ID: 9150212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germination of heat- and alkali-altered spores of Clostridium perfringens type A by lysozyme and an initiation protein.
    Duncan CL; Labbe RG; Reich RR
    J Bacteriol; 1972 Feb; 109(2):550-9. PubMed ID: 4333607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of high concentrations of carbon dioxide on the germination of bacterial spores.
    Enfors SO; Molin G
    J Appl Bacteriol; 1978 Oct; 45(2):279-85. PubMed ID: 31348
    [No Abstract]   [Full Text] [Related]  

  • 17. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces.
    Udompijitkul P; Alnoman M; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2013 Jun; 34(2):328-36. PubMed ID: 23541199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes.
    Li J; McClane BA
    Appl Environ Microbiol; 2006 Dec; 72(12):7620-5. PubMed ID: 17041163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of Clostridium perfringens spores under conditions that disrupt hydrophobic interactions of biological macromolecules.
    Craven SE
    Appl Environ Microbiol; 1988 Aug; 54(8):2042-8. PubMed ID: 2902828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of spore-lytic enzyme from Clostridium perfringens spores.
    Gombas DE; Labbe RG
    J Gen Microbiol; 1981 Sep; 126(1):37-44. PubMed ID: 6278055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.