These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 6260842)

  • 1. Export of cyclic AMP by mammalian reticulocytes.
    Brunton LL; Buss JE
    J Cyclic Nucleotide Res; 1980; 6(5):369-77. PubMed ID: 6260842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic effects of (-)-isoprenaline stimulation of adenylate cyclase in reticulocytes.
    Kostic MM; Müller M; Maretzki D; Krause EG; Rapoport SM
    Biomed Biochim Acta; 1986; 45(8):973-83. PubMed ID: 2430561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro maturation of the rat reticulocyte beta-adrenoceptor adenylate cyclase system.
    Montandon JB; Porzig H
    Biomed Biochim Acta; 1983; 42(11-12):S197-201. PubMed ID: 6326770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Export of cyclic AMP from avian red cells. Independence from major membrane transporters and specific inhibition by prostaglandin A.
    Heasley LE; Azari J; Brunton LL
    Mol Pharmacol; 1985 Jan; 27(1):60-5. PubMed ID: 2981402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of adenylate cyclase stimulation in energy metabolism of reticulocytes.
    Kostic MM; Maretzki DU; Zivkovic RV; Krause EG; Rapoport SM
    Biomed Biochim Acta; 1987; 46(2-3):S234-8. PubMed ID: 3036111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase activities of S49 lymphoma cells by agents increasing cyclic AMP.
    Honeysett JM; Insel PA
    J Cyclic Nucleotide Res; 1981; 7(5):321-32. PubMed ID: 6284819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative activation by AMP and cyclic-AMP of rat erythrocyte and reticulocyte glycolysis.
    Luque J; Roncalés P; Tejero C; Pinilla M
    Acta Biol Med Ger; 1977; 36(5-6):631-8. PubMed ID: 203150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of Ca2+ and guanylnucleotides on isoprenaline-stimulated cyclic AMP formation in rat reticulocyte ghosts.
    Porzig H; Schneider M; Makulska HE
    Biochim Biophys Acta; 1980 Dec; 633(3):331-46. PubMed ID: 6260156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP stimulates the cyclic GMP egression pump in human erythrocytes: effects of probenecid, verapamil, progesterone, theophylline, IBMX, forskolin, and cyclic AMP on cyclic GMP uptake and association to inside-out vesicles.
    Schultz C; Vaskinn S; Kildalsen H; Sager G
    Biochemistry; 1998 Jan; 37(4):1161-6. PubMed ID: 9454609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturation-dependent changes of the rat reticulocyte energy metabolism and hormonal responsiveness.
    Kostić MM; Zivković RV; Rapoport SM
    Biomed Biochim Acta; 1990; 49(2-3):S178-82. PubMed ID: 2167079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glutathione adduct of prostaglandin A1 acts intracellularly to elevate cyclic AMP by inhibiting its extrusion.
    Heasley LE; Azari J; Brunton LL
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(1):3-8. PubMed ID: 2984263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic AMP-dependent protein kinases and binding sites for cyclic AMP in rat erythrocytes.
    Quiring K; Kaiser G; Gauger D; Palm D
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(4):397-417. PubMed ID: 172804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of the adenylyl cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(9):1111-22. PubMed ID: 6322745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large potentiation of agonist response in intact cells is produced by increases only in GTP-dependent adenylate cyclase activity.
    Johnson GS; Kimura N; Kimura N
    J Cyclic Nucleotide Res; 1981; 7(2):105-15. PubMed ID: 6278002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of adenosine 3',5'-monophosphate from adenosine in mouse thymocytes.
    Zenser TV
    Biochim Biophys Acta; 1975 Oct; 404(2):202-13. PubMed ID: 170974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Norepinephrine stimulation of pineal cyclic AMP response element-binding protein phosphorylation: primary role of a beta-adrenergic receptor/cyclic AMP mechanism.
    Roseboom PH; Klein DC
    Mol Pharmacol; 1995 Mar; 47(3):439-49. PubMed ID: 7700241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Ca2+-dependent cyclic AMP accumulation and Ca2+ metabolism in intact pituitary tumor cells by modulators of prolactin production.
    Brostrom MA; Brostrom CO; Brotman LA; Green SS
    Mol Pharmacol; 1983 Mar; 23(2):399-408. PubMed ID: 6300649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of protein kinase C in the UTP-mediated potentiation of cyclic AMP accumulation in mouse J774 macrophages.
    Lin WW; Chen BC
    Br J Pharmacol; 1997 Aug; 121(8):1749-57. PubMed ID: 9283713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of intracellular cyclic AMP in skeletal muscle cells involves the efflux of cyclic nucleotide to the extracellular compartment.
    Godinho RO; Costa VL
    Br J Pharmacol; 2003 Mar; 138(5):995-1003. PubMed ID: 12642402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.