BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6261743)

  • 1. Spin trap evidence for production of superoxide radical anions by purified NADPH-cytochrome P-450 reductase.
    Bösterling B; Trudell JR
    Biochem Biophys Res Commun; 1981 Jan; 98(2):569-75. PubMed ID: 6261743
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of flavin addition and removal on the formation of superoxide by NADPH-Cytochrome P-450 reductase: a spin-trap study.
    Grover TA; Piette LH
    Arch Biochem Biophys; 1981 Nov; 212(1):105-14. PubMed ID: 6272650
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P-450 reductase.
    Sinha BK; Singh Y; Krishna G
    Biochem Biophys Res Commun; 1986 Mar; 135(2):583-8. PubMed ID: 3008728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of free radicals from neocarzinostatin mediated by NADPH/cytochrome P-450 reductase via activation of enediyne chromophore.
    Sato K; Akaike T; Suga M; Ando M; Maeda H
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1716-23. PubMed ID: 7811256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrazine radical formation catalyzed by rat microsomal NADPH-cytochrome P-450 reductase.
    Noda A; Noda H; Misaka A; Sumimoto H; Tatsumi K
    Biochem Biophys Res Commun; 1988 May; 153(1):256-60. PubMed ID: 2837203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of direct generation of oxygen free radicals from heterocyclic amines by NADPH/cytochrome P-450 reductase in vitro.
    Sato K; Akaike T; Kojima Y; Ando M; Nagao M; Maeda H
    Jpn J Cancer Res; 1992 Nov; 83(11):1204-9. PubMed ID: 1336493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not all aromatic nitro compounds form free radicals.
    Rosen GM; Demos HA; Rauckman EJ
    Toxicol Lett; 1984 Aug; 22(2):145-52. PubMed ID: 6089382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of anthracycline antibiotic free radical formation and reductive glycosidase activity.
    Gutiérrez PL; Gee MV; Bachur NR
    Arch Biochem Biophys; 1983 May; 223(1):68-75. PubMed ID: 6305277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactoferrin-mediated formation of oxygen radicals by NADPH-cytochrome P-450 reductase system.
    Nakamura M
    J Biochem; 1990 Mar; 107(3):395-9. PubMed ID: 1692825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of semiquinone radical from carbazilquinone by NADPH-cytochrome P-450 reductase.
    Kikuchi T; Sugiura Y; Komiyama T
    Biochem Pharmacol; 1981 Jun; 30(12):1717-8. PubMed ID: 6268108
    [No Abstract]   [Full Text] [Related]  

  • 12. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase.
    Komiyama T; Kikuchi T; Sugiura Y
    Biochem Pharmacol; 1982 Nov; 31(22):3651-6. PubMed ID: 6295407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of 4-aminophenoxyl free radical from the acetaminophen metabolite N-acetyl-p-benzoquinone imine.
    Fischer V; West PR; Nelson SD; Harvison PJ; Mason RP
    J Biol Chem; 1985 Sep; 260(21):11446-50. PubMed ID: 2995335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [17O]oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN.
    Mottley C; Connor HD; Mason RP
    Biochem Biophys Res Commun; 1986 Dec; 141(2):622-8. PubMed ID: 3026386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase.
    Shinde SS; Hay MP; Patterson AV; Denny WA; Anderson RF
    J Am Chem Soc; 2009 Oct; 131(40):14220-1. PubMed ID: 19772319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of superoxide and trace transition metals in the production of alpha-hydroxyethyl radical from ethanol by microsomes from alcohol dehydrogenase-deficient deermice.
    Knecht KT; Thurman RG; Mason RP
    Arch Biochem Biophys; 1993 Jun; 303(2):339-48. PubMed ID: 8390220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: critical remarks on spectrophotometric approaches.
    Dikalov S; Khramtsov V; Zimmer G
    Arch Biochem Biophys; 1996 Feb; 326(2):207-18. PubMed ID: 8611025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radicals of acetaminophen: their subsequent reactions and toxicological significance.
    Mason RP; Fischer V
    Fed Proc; 1986 Sep; 45(10):2493-9. PubMed ID: 3017768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance.
    Sinha BK; Mimnaugh EG; Rajagopalan S; Myers CE
    Cancer Res; 1989 Jul; 49(14):3844-8. PubMed ID: 2544260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic stability of superoxide and hydroxyl radical adducts of a cyclic nitrone toward rat liver microsomes and cytosol: A stopped-flow ESR spectroscopy study.
    Bézière N; Frapart Y; Rockenbauer A; Boucher JL; Mansuy D; Peyrot F
    Free Radic Biol Med; 2010 Aug; 49(3):437-46. PubMed ID: 20452418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.