BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 6261789)

  • 21. Kinetic distinction between cytochromes a and a3 in cytochrome c oxidase. Rapid scanning stopped flow study of anaerobic reduction by a neutral and a negatively charged donor.
    Halaka FG; Babcock GT; Dye JL
    J Biol Chem; 1981 Feb; 256(3):1084-7. PubMed ID: 6256379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman evidence for an exchangeable protein hydrogen associated with the heme a group of cytochrome oxidase.
    Copeland RA; Spiro TG
    FEBS Lett; 1986 Mar; 197(1-2):239-43. PubMed ID: 3005042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unusual heme structure in cytochrome aa3 from Sulfolobus acidocaldarius: a resonance Raman investigation.
    Heibel GE; Anzenbacher P; Hildebrandt P; Schäfer G
    Biochemistry; 1993 Oct; 32(40):10878-84. PubMed ID: 8399237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: a resonance Raman study.
    Hildebrandt P; Heimburg T; Marsh D; Powell GL
    Biochemistry; 1990 Feb; 29(6):1661-8. PubMed ID: 2159343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase.
    Hill BC; Brittain T; Eglinton DG; Gadsby PM; Greenwood C; Nicholls P; Peterson J; Thomson AJ; Woon TC
    Biochem J; 1983 Oct; 215(1):57-66. PubMed ID: 6312973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing protein-cofactor interactions in the terminal oxidases by second derivative spectroscopy: study of bacterial enzymes with cofactor substitutions and heme A model compounds.
    Felsch JS; Horvath MP; Gursky S; Hobaugh MR; Goudreau PN; Fee JA; Morgan WT; Admiraal SJ; Ikeda-Saito M; Fujiwara T
    Protein Sci; 1994 Nov; 3(11):2097-103. PubMed ID: 7703856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microcirculating system for simultaneous determination of Raman and absorption spectra of enzymatic reaction intermediates and its application to the reaction of cytochrome c oxidase with hydrogen peroxide.
    Proshlyakov DA; Ogura T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    Biochemistry; 1996 Jan; 35(1):76-82. PubMed ID: 8555201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic circular dichroism study of cytochrome ba3 from Thermus thermophilus: spectral contributions from cytochromes b and a3 and nanosecond spectroscopy of CO photodissociation intermediates.
    Goldbeck RA; Einarsdóttir O; Dawes TD; O'Connor DB; Surerus KK; Fee JA; Kliger DS
    Biochemistry; 1992 Oct; 31(39):9376-87. PubMed ID: 1327113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pH dependence of cytochrome a conformation in cytochrome c oxidase.
    Ishibe N; Lynch SR; Copeland RA
    J Biol Chem; 1991 Dec; 266(35):23916-20. PubMed ID: 1660888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of high pH on the spectral and catalytic properties of beef heart cytochrome oxidase.
    Baker GM; Palmer G
    Biochemistry; 1987 Jun; 26(11):3038-44. PubMed ID: 3038174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soret-excited Raman spectroscopy of the spinach cytochrome b6f complex. Structures of the b- and c-type hemes, chlorophyll a, and beta-carotene.
    Picaud T; Le Moigne C; Gomez de Gracia A; Desbois A
    Biochemistry; 2001 Jun; 40(24):7309-17. PubMed ID: 11401579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman evidence for low-spin Fe2+ heme a3 in energized cytochrome c oxidase: implications for the inhibition of O2 reduction.
    Ray GB; Copeland RA; Lee CP; Spiro TG
    Biochemistry; 1990 Apr; 29(13):3208-13. PubMed ID: 2159329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytochrome c oxidase: decay of the primary oxygen intermediate involves direct electron transfer from cytochrome a.
    Han SH; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8408-12. PubMed ID: 2172987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemes a and a3 environments of plant cytochrome c oxidase.
    de Paula JC; Peiffer WE; Ingle RT; Centeno JA; Ferguson-Miller S; Babcock GT
    Biochemistry; 1990 Sep; 29(37):8702-6. PubMed ID: 2176830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Appearance of the v(FeIV = O) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction.
    Varotsis C; Babcock GT
    Biochemistry; 1990 Aug; 29(32):7357-62. PubMed ID: 2171642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resonance Raman investigations of chloroperoxidase, horseradish peroxidase, and cytochrome c using Soret band laser excitation.
    Remba RD; Champion PM; Fitchen DB; Chiang R; Hager LP
    Biochemistry; 1979 May; 18(11):2280-90. PubMed ID: 36129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reduced minus oxidized difference spectra of cytochromes a and a3.
    Liao GL; Palmer G
    Biochim Biophys Acta; 1996 Jun; 1274(3):109-11. PubMed ID: 8664303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of the resonance Raman properties of the fast and slow forms of cytochrome oxidase.
    Schoonover JR; Dyer RB; Woodruff WH; Baker GM; Noguchi M; Palmer G
    Biochemistry; 1988 Jul; 27(15):5433-40. PubMed ID: 2846036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The steady state behaviour of cytochrome c oxidase in proteoliposomes.
    Nicholls P
    FEBS Lett; 1993 Jul; 327(2):194-8. PubMed ID: 8392952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.