BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6261807)

  • 1. Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid.
    London E; Feigenson GW
    Biochemistry; 1981 Mar; 20(7):1932-8. PubMed ID: 6261807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence quenching in lecithin and lecithin/cholesterol liposomes by parmagenetic lipid analogues. Introduction of a new probe approach.
    Bieri VG; Wallach DF
    Biochim Biophys Acta; 1975 May; 389(3):413-27. PubMed ID: 164944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic fluorescence quenching studies on lipid mobilities in phosphatidylcholine-cholesterol membranes.
    Merkle H; Subczynski WK; Kusumi A
    Biochim Biophys Acta; 1987 Feb; 897(2):238-48. PubMed ID: 3028480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Equilibria in binary mixtures of dimyristoylphosphatidylcholine and cardiolipin.
    Berclaz T; McConnell HM
    Biochemistry; 1981 Nov; 20(23):6635-40. PubMed ID: 6272842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small fluorophores.
    Yeager MD; Feigenson GW
    Biochemistry; 1990 May; 29(18):4380-92. PubMed ID: 2161684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the location profile of fluorophores in phosphatidylcholine bilayers by the use or paramagnetic quenching.
    Luisetti J; Möhwald H; Galla HJ
    Biochim Biophys Acta; 1979 Apr; 552(3):519-30. PubMed ID: 221020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor: a magnetic resonance and biochemical study.
    Truong HT; Pratt EA; Ho C
    Biochemistry; 1991 Apr; 30(16):3893-8. PubMed ID: 1850292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-electron double resonance and saturation-recovery studies of nitroxide electron and nuclear spin-lattice relaxation times and Heisenberg exchange rates: lateral diffusion in dimyristoyl phosphatidylcholine.
    Popp CA; Hyde JS
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2559-63. PubMed ID: 6283533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching of fluorescence of pyrene-substituted lecithin by tetracyanoquinodimethane in liposomes.
    Lemmetyinen H; Yliperttula M; Mikkola J; Kinnunen P
    Biophys J; 1989 May; 55(5):885-95. PubMed ID: 2720079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching in model membranes. 2. Determination of local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum.
    London E; Feigenson GW
    Biochemistry; 1981 Mar; 20(7):1939-48. PubMed ID: 6452901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles.
    Florine KI; Feigenson GW
    Biochemistry; 1987 Mar; 26(6):1757-68. PubMed ID: 3036210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol.
    Recktenwald DJ; McConnell HM
    Biochemistry; 1981 Jul; 20(15):4505-10. PubMed ID: 6269591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of membrane structure using fluorescence quenching by spin-labels. A review of recent studies.
    London E
    Mol Cell Biochem; 1982 Jun; 45(3):181-8. PubMed ID: 6289077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid kinetics of insertion and accessibility of spin-labeled phospholipid analogs in lipid membranes: a stopped-flow electron paramagnetic resonance approach.
    Marx U; Lassmann G; Wimalasena K; Müller P; Herrmann A
    Biophys J; 1997 Sep; 73(3):1645-54. PubMed ID: 9284331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-quenching study of percolation and compartmentalization in two-phase lipid bilayers.
    Piknová B; Marsh D; Thompson TE
    Biophys J; 1996 Aug; 71(2):892-7. PubMed ID: 8842228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of phosphatidylglycerol on the incorporation process of cytochrome P-450 in liposomes from dimyristoylphosphatidylcholine].
    Akhrem AA; Gurinovich NA; Kisel' MA; Kiselev PA
    Biokhimiia; 1985 Jan; 50(1):97-101. PubMed ID: 2983785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase.
    Kusumi A; Subczynski WK; Pasenkiewicz-Gierula M; Hyde JS; Merkle H
    Biochim Biophys Acta; 1986 Jan; 854(2):307-17. PubMed ID: 3002470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen permeability of phosphatidylcholine--cholesterol membranes.
    Subczynski WK; Hyde JS; Kusumi A
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4474-8. PubMed ID: 2543978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational motion of yeast cytochrome oxidase in phosphatidylcholine complexes studied by saturation-transfer electron spin resonance.
    Fajer P; Knowles PF; Marsh D
    Biochemistry; 1989 Jun; 28(13):5634-43. PubMed ID: 2550057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of phospholipid conformational heterogeneity in model membranes by spin-label EPR and frequency-domain fluorescence spectroscopy.
    Squier TC; Mahaney JE; Yin JJ; Lai CS; Lakowicz JR
    Biophys J; 1991 Mar; 59(3):654-69. PubMed ID: 1646658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.