BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 6261818)

  • 1. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model.
    Plesner IW; Plesner L; Nørby JG; Klodos I
    Biochim Biophys Acta; 1981 May; 643(2):483-94. PubMed ID: 6261818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain.
    Plesner IW; Plesner L
    Biochim Biophys Acta; 1981 Nov; 648(2):231-46. PubMed ID: 6272852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. I. Substrate identity.
    Plesner L; Plesner IW
    Biochim Biophys Acta; 1981 May; 643(2):449-62. PubMed ID: 6261816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. II. Kinetic characterization of phosphointermediates.
    Klodos I; Nørby JG; Plesner IW
    Biochim Biophys Acta; 1981 May; 643(2):463-82. PubMed ID: 6261817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. II. Exchange and hydrolysis kinetics at micromolar nucleotide concentrations.
    Plesner L; Plesner IW
    Biochim Biophys Acta; 1988 Jan; 937(1):63-72. PubMed ID: 2825809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. I. Exchange and hydrolysis kinetics at millimolar nucleotide concentrations.
    Plesner L; Plesner IW
    Biochim Biophys Acta; 1988 Jan; 937(1):51-62. PubMed ID: 2825808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant.
    Klodos I; Nørby JG
    Biochim Biophys Acta; 1987 Feb; 897(2):302-14. PubMed ID: 3028481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of (Na+ + K+)-ATPase: analysis of the influence of Na+ and K+ by steady-state kinetics.
    Plesner IW; Plesner L
    Biochim Biophys Acta; 1985 Aug; 818(2):235-50. PubMed ID: 2992590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Na+-ATPase: influence of Na+ and K+ on substrate binding and hydrolysis.
    Plesner L; Plesner IW
    Biochim Biophys Acta; 1985 Aug; 818(2):222-34. PubMed ID: 3161541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unexpected effect of ATP on the ratio between activity and phosphoenzyme level of Na+/K(+)-ATPase in steady state.
    Schwarzbaum PJ; Kaufman SB; Rossi RC; Garrahan PJ
    Biochim Biophys Acta; 1995 Jan; 1233(1):33-40. PubMed ID: 7833347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ATP and monovalent cations on Mg2+ inhibition of (Na,K)-ATPase.
    Pedemonte CH; Beaugé L
    Arch Biochem Biophys; 1986 Feb; 244(2):596-606. PubMed ID: 3004346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [32P]ATP synthesis in steady state from [32P]Pi and ADP by Na+/K(+)-ATPase from ox brain and pig kidney. Activation by K+.
    Plesner L; Karlsmose B; Lüscher ME
    Biochim Biophys Acta; 1990 Sep; 1040(2):167-74. PubMed ID: 2169305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand effects on membrane lipids associated with sodium, potassium-activated adenosine triphosphatase: comparative spin probe studies with rat brain and heart enzyme preparations.
    Coughlin RT; Akera T; McGroarty EJ; Steinbach C
    Mol Pharmacol; 1987 Jul; 32(1):147-53. PubMed ID: 3037299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates.
    Pauls H; Bredenbröcker B; Schoner W
    Eur J Biochem; 1980 Aug; 109(2):523-33. PubMed ID: 6250846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of (Na+,K+)-ATPase by magnesium ions and inorganic phosphate and release of these ligands in the cycles of ATP hydrolysis.
    Pedemonte CH; Beaugé L
    Biochim Biophys Acta; 1983 Oct; 748(2):245-53. PubMed ID: 6313060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential regulatory sites of the Na+,K+-ATPase by kinetic analysis.
    Kong BY; Clarke RJ
    Biochemistry; 2004 Mar; 43(8):2241-50. PubMed ID: 14979720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction sequences for (Na+ + K+)-dependent ATPase hydrolytic activities: new quantitative kinetic models.
    Robinson JD; Leach CA; Davis RL; Robinson LJ
    Biochim Biophys Acta; 1986 Aug; 872(3):294-304. PubMed ID: 3015217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.