These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6262279)

  • 1. A comparison of the NaI--CsI phoswich and a hyperpure germanium array for in vivo detection of the actinides.
    Berger CD; Goans RE
    Health Phys; 1981 Apr; 40(4):535-42. PubMed ID: 6262279
    [No Abstract]   [Full Text] [Related]  

  • 2. Simulation of phoswich detectors using MCNPX and EGSNRC.
    Leone D; Breustedt B
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):402-6. PubMed ID: 21183546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of background in low-energy spectrum of Phoswich detector.
    Arun B; Manohari M; Mathiyarasu R; Rajagopal V; Jose MT
    Radiat Prot Dosimetry; 2014 Dec; 162(3):260-7. PubMed ID: 24300341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of a low energy Ge detector system for in vivo monitoring in the framework of ICRP 78 applications.
    Lopez MA; Navarro T
    Radiat Prot Dosimetry; 2003; 105(1-4):477-82. PubMed ID: 14527012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Head calibration phantoms for actinides: measurements and simulations.
    Vrba T
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):357-60. PubMed ID: 21169290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing skull burdens of actinides using a mathematical phantom: a Monte Carlo approach.
    Bhati S; Sharma RC; Raj VV
    Radiat Prot Dosimetry; 2003; 103(3):247-54. PubMed ID: 12678387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of geometries for in vivo measurements of actinides in the skull.
    Vrba T
    Appl Radiat Isot; 2010; 68(4-5):918-21. PubMed ID: 20223415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimisation on the two-layer stack gamma detectors of CsI(Tl) coupled with a pin photodiode for non-destructive testing.
    Bai JH; Whang JH
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):76-9. PubMed ID: 21561939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of uncertainties in lung measurement of actinides due to non-uniform distribution of activity in lungs.
    Nadar MY; Akar DK; Rao DD; Kulkarni MS; Pradeepkumar KS
    Appl Radiat Isot; 2017 Sep; 127():109-115. PubMed ID: 28570915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of skull and knee voxel phantoms for the assessment of skeletal burden of low-energy photon emitters.
    Nadar MY; Akar DK; Patni HK; Singh IS; Mishra L; Rao DD; Pradeepkumar KS
    Radiat Prot Dosimetry; 2014 Dec; 162(4):469-77. PubMed ID: 24435911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement techniques for radium and the actinides in man at the Center for Human Radiobiology.
    Toohey RE; Keane AT; Rundo J
    Health Phys; 1983; 44 Suppl 1():323-41. PubMed ID: 6305878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples.
    Baccouche S; Al-Azmi D; Karunakara N; Trabelsi A
    Appl Radiat Isot; 2012 Jan; 70(1):227-32. PubMed ID: 21852143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a NaI(T1) survey meter to measure 125I activity.
    Nishizawa K
    Health Phys; 1986 Mar; 50(3):415-9. PubMed ID: 3949533
    [No Abstract]   [Full Text] [Related]  

  • 14. [On the properties of germanium detectors for gamma spectrometry].
    Adams F
    J Belge Radiol; 1968; 51(1):40-8. PubMed ID: 5745921
    [No Abstract]   [Full Text] [Related]  

  • 15. RELATIVE DISSOLUTION RATES OF RADIOACTIVE MATERIALS USED AT AWE.
    Miller TJ; Bingham D; Cockerill R; Waldren S; Moth N
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):218-20. PubMed ID: 26362139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Uncertainties in lung measurements of actinides due to counting statistics.
    Nadar MY; Akar DK; Singh IS; Sawant PD; Kulkarni MS
    Appl Radiat Isot; 2019 Jan; 143():67-71. PubMed ID: 30390502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of results obtained in intercomparison exercises for determination of actinides.
    Benedik L
    Appl Radiat Isot; 2013 Nov; 81():10-3. PubMed ID: 23566808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lived phosphorescent components in NaI(T1) and CsI(T1).
    Delaney CF; Lamki AM
    Int J Appl Radiat Isot; 1968 Feb; 19(2):169-70. PubMed ID: 5639086
    [No Abstract]   [Full Text] [Related]  

  • 19. DEVELOPMENT OF A RAPID PROCEDURE TO ANALYSE Pu, Am AND 90Sr IN EMERGENCY URINE BIOASSAY IN CIEMAT BIOELIMINATION LABORATORY: METHOD VALIDATION BY EMERGENCY BIOASSAY INTERCOMPARISON EXERCISES.
    Sierra I; Hernández C
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):237-41. PubMed ID: 26743257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of in vivo background in phoswich lung count spectra.
    Richards NW
    Health Phys; 1999 May; 76(5):524-31. PubMed ID: 10201566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.