BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 6263713)

  • 1. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.
    Park KS; Jo I; Pak K; Bae SW; Rhim H; Suh SH; Park J; Zhu H; So I; Kim KW
    Pflugers Arch; 2002 Jan; 443(3):344-52. PubMed ID: 11810202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney.
    Murer H; Hopfer U; Kinne R
    Biochem J; 1976 Mar; 154(3):597-604. PubMed ID: 942389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the coupling ratio for Na+ -H+ exchange in renal microvillus membrane vesicles.
    Kinsella JL; Aronson PS
    Biochim Biophys Acta; 1982 Jul; 689(1):161-4. PubMed ID: 7104347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles.
    Beck JC; Sacktor B
    J Biol Chem; 1978 Oct; 253(20):7158-62. PubMed ID: 701240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D; Weinstein SW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmaline inhibition of Na-dependent transport in renal microvillus membrane vesicles.
    Aronson PS; Bounds SE
    Am J Physiol; 1980 Mar; 238(3):F210-7. PubMed ID: 7369363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
    Blomstedt JW; Aronson PS
    J Clin Invest; 1980 Apr; 65(4):931-4. PubMed ID: 7358852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.
    Schneider EG; Hammerman MR; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7650-6. PubMed ID: 6156940
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport.
    Aronson PS
    J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar and amino acid transport in animal cells.
    Hopfer U
    Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenolsulfonphthalein transport by potential-sensitive urate transport system.
    Itagaki S; Shimamoto S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K
    Eur J Pharmacol; 2005 Aug; 518(2-3):83-9. PubMed ID: 16083873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient.
    Sacktor B; Cheng L
    J Biol Chem; 1981 Aug; 256(15):8080-4. PubMed ID: 7263641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein thiols in inhibition of sodium-coupled glucose uptake by cisplatin in renal brush-border membrane vesicles.
    Potdevin S; Courjault-Gautier F; Du Sorbier BM; Ripoche P; Toutain HJ
    J Pharmacol Exp Ther; 1998 Jan; 284(1):142-50. PubMed ID: 9435172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.