These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 6263713)

  • 1. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles.
    Sacktor B; Beck JC
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.
    Park KS; Jo I; Pak K; Bae SW; Rhim H; Suh SH; Park J; Zhu H; So I; Kim KW
    Pflugers Arch; 2002 Jan; 443(3):344-52. PubMed ID: 11810202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney.
    Murer H; Hopfer U; Kinne R
    Biochem J; 1976 Mar; 154(3):597-604. PubMed ID: 942389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the coupling ratio for Na+ -H+ exchange in renal microvillus membrane vesicles.
    Kinsella JL; Aronson PS
    Biochim Biophys Acta; 1982 Jul; 689(1):161-4. PubMed ID: 7104347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles.
    Beck JC; Sacktor B
    J Biol Chem; 1978 Oct; 253(20):7158-62. PubMed ID: 701240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D; Weinstein SW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmaline inhibition of Na-dependent transport in renal microvillus membrane vesicles.
    Aronson PS; Bounds SE
    Am J Physiol; 1980 Mar; 238(3):F210-7. PubMed ID: 7369363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
    Blomstedt JW; Aronson PS
    J Clin Invest; 1980 Apr; 65(4):931-4. PubMed ID: 7358852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism.
    Schneider EG; Hammerman MR; Sacktor B
    J Biol Chem; 1980 Aug; 255(16):7650-6. PubMed ID: 6156940
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport.
    Aronson PS
    J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar and amino acid transport in animal cells.
    Hopfer U
    Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenolsulfonphthalein transport by potential-sensitive urate transport system.
    Itagaki S; Shimamoto S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K
    Eur J Pharmacol; 2005 Aug; 518(2-3):83-9. PubMed ID: 16083873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient.
    Sacktor B; Cheng L
    J Biol Chem; 1981 Aug; 256(15):8080-4. PubMed ID: 7263641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein thiols in inhibition of sodium-coupled glucose uptake by cisplatin in renal brush-border membrane vesicles.
    Potdevin S; Courjault-Gautier F; Du Sorbier BM; Ripoche P; Toutain HJ
    J Pharmacol Exp Ther; 1998 Jan; 284(1):142-50. PubMed ID: 9435172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.