These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 6263713)

  • 21. Na-dependent transport of S-(1,2-dichlorovinyl)-L-cysteine by renal brush-border membrane vesicles.
    Wright SH; Wunz TM; North J; Stevens JL
    J Pharmacol Exp Ther; 1998 Apr; 285(1):162-9. PubMed ID: 9536006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium transport in opossum kidney cells: effects of Na-selective and K-selective ionizable cryptands, and of valinomycin, FCCP and nystatin.
    Loiseau A; Leroy C; Castaing M
    Biochim Biophys Acta; 1997 Nov; 1330(1):39-49. PubMed ID: 9375811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the electrochemical gradient for Na+ in D-glucose transport by mullet kidney.
    Lee SH; Pritchard JB
    Am J Physiol; 1983 Mar; 244(3):F278-88. PubMed ID: 6299114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles.
    Barrett PQ; Aronson PS
    Am J Physiol; 1982 Feb; 242(2):F126-31. PubMed ID: 7065130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter.
    Miyauchi S; Gopal E; Babu E; Srinivas SR; Kubo Y; Umapathy NS; Thakkar SV; Ganapathy V; Prasad PD
    Biochim Biophys Acta; 2010 Jun; 1798(6):1164-71. PubMed ID: 20211600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV 40-transformed mouse fibroblasts.
    Lever JE
    J Cell Physiol; 1976 Dec; 89(4):779-87. PubMed ID: 188848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R; Karlish SJ; Rephaeli A; Stein WD
    J Physiol; 1987 Jun; 387():331-55. PubMed ID: 2443682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiology of plasma membrane vesicles.
    Wright EM
    Am J Physiol; 1984 Apr; 246(4 Pt 2):F363-72. PubMed ID: 6372509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of a diuretic agent as a probe to investigate site and mechanism of ion transport processes.
    Giebisch G
    Arzneimittelforschung; 1985; 35(1A):336-42. PubMed ID: 2580541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrogenic transport of 5-oxoproline in rabbit renal brush-border membrane vesicles. Effect of intravesicular potassium.
    Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1983 Jul; 732(1):32-40. PubMed ID: 6871198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Na+-dependent, potential-sensitive L-ascorbate transport across brush border membrane vesicles from kidney cortex.
    Toggenburger G; Häusermann M; Mütsch B; Genoni G; Kessler M; Weber F; Hornig D; O'Neill B; Semenza G
    Biochim Biophys Acta; 1981 Sep; 646(3):433-43. PubMed ID: 7284371
    [No Abstract]   [Full Text] [Related]  

  • 36. Leucine transport coupled to proton movement in membrane vesicles from Chang liver cells.
    Mohri T; Mitsumoto Y; Ohyashiki T
    Biochem Int; 1983 Aug; 7(2):159-67. PubMed ID: 6089808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes.
    Guggino SE; Aronson PS
    J Clin Invest; 1985 Aug; 76(2):543-7. PubMed ID: 4031062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus.
    Harris RC; Brenner BM; Seifter JL
    J Clin Invest; 1986 Mar; 77(3):724-33. PubMed ID: 3005362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L-glutamate transport in renal plasma membrane vesicles.
    Sacktor B
    Mol Cell Biochem; 1981 Sep; 39():239-51. PubMed ID: 6118822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit.
    Meddings JB; DeSouza D; Goel M; Thiesen S
    J Clin Invest; 1990 Apr; 85(4):1099-107. PubMed ID: 2318967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.