These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 6263867)

  • 41. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases.
    Walter J; Noyer-Weidner M; Trautner TA
    EMBO J; 1990 Apr; 9(4):1007-13. PubMed ID: 2108858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A GCDGC-specific DNA (cytosine-5) methyltransferase that methylates the GCWGC sequence on both strands and the GCSGC sequence on one strand.
    Furuta Y; Miura F; Ichise T; Nakayama SMM; Ikenaka Y; Zorigt T; Tsujinouchi M; Ishizuka M; Ito T; Higashi H
    PLoS One; 2022; 17(3):e0265225. PubMed ID: 35312710
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12.
    Marinus MG; Morris NR
    J Bacteriol; 1973 Jun; 114(3):1143-50. PubMed ID: 4576399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On heterogeneity of DNA methylases from Escherichia coli SK cells.
    Nikolskaya II; Lopatina NG; Debov SS
    Mol Cell Biochem; 1981 Feb; 35(1):3-10. PubMed ID: 7012581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic recombination during transformation in Bacillus subtilis: appearance of a deoxyribonucleic acid methylase.
    Ganesan AT
    J Bacteriol; 1979 Jul; 139(1):270-9. PubMed ID: 110783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of DNA adenine methylation mutants of Escherichia coli K12.
    Bale A; d'Alarcao M; Marinus MG
    Mutat Res; 1979 Feb; 59(2):157-65. PubMed ID: 375073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the recognition sites of cytosine DNA-methylases from Escherichia coli SK.
    Nikolskaya II; Lopatina NG; Anikeicheva NV; Debov SS
    Nucleic Acids Res; 1979 Sep; 7(2):517-28. PubMed ID: 386287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The oriC unwinding by dam methylation in Escherichia coli.
    Yamaki H; Ohtsubo E; Nagai K; Maeda Y
    Nucleic Acids Res; 1988 Jun; 16(11):5067-73. PubMed ID: 3290846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methylated cytosine at Dcm (CCATGG) sites in Escherichia coli: possible function and evolutionary implications.
    Gómez-Eichelmann MC; Ramírez-Santos J
    J Mol Evol; 1993 Jul; 37(1):11-24. PubMed ID: 8360914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli.
    Militello KT; Simon RD; Qureshi M; Maines R; VanHorne ML; Hennick SM; Jayakar SK; Pounder S
    FEMS Microbiol Lett; 2012 Mar; 328(1):78-85. PubMed ID: 22150247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4.
    Jeltsch A; Christ F; Fatemi M; Roth M
    J Biol Chem; 1999 Jul; 274(28):19538-44. PubMed ID: 10391886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA methylation inhibits the transfecting activity of replicative- form phi X174 DNA.
    Wang RY; Shenoy S; Ehrlich M
    J Virol; 1984 Mar; 49(3):674-9. PubMed ID: 6321756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis.
    Arnold H; Kersten H
    FEBS Lett; 1973 Oct; 36(1):34-8. PubMed ID: 4201118
    [No Abstract]   [Full Text] [Related]  

  • 54. Sequence specificity of DNA adenine methylase in the protozoan Tetrahymena thermophila.
    Bromberg S; Pratt K; Hattman S
    J Bacteriol; 1982 May; 150(2):993-6. PubMed ID: 6950932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of restriction-modification enzymes Cfr13 I from Citrobacter freundii RFL13.
    Bitinaité JB; Klimasauskas SJ; Butkus VV; Janulaitis AA
    FEBS Lett; 1985 Mar; 182(2):509-13. PubMed ID: 2984047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Restriction and modification in Bacillus subtilis Marburg 168: target sites and effects on plasmid transformation.
    Bron S; Jannière L; Ehrlich SD
    Mol Gen Genet; 1988 Jan; 211(1):186-9. PubMed ID: 2830465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deoxyribonucleic acid-cytosine methylation by host- and plasmid-controlled enzymes.
    May MS; Hattaman S
    J Bacteriol; 1975 Apr; 122(1):129-38. PubMed ID: 1091619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A DNA methyltransferase can protect the genome from postdisturbance attack by a restriction-modification gene complex.
    Takahashi N; Naito Y; Handa N; Kobayashi I
    J Bacteriol; 2002 Nov; 184(22):6100-8. PubMed ID: 12399478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Studies on the substrate specificity of the DNA methylase activity from Escherichia coli K-12.
    Schmidt A; Reinert H; Venner H; Bieber J
    Z Allg Mikrobiol; 1979; 19(7):489-95. PubMed ID: 232591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytosine methylation of the sequence GATC in a mycoplasma.
    Dybvig K; Swinton D; Maniloff J; Hattman S
    J Bacteriol; 1982 Sep; 151(3):1420-4. PubMed ID: 6286600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.