These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6264018)

  • 21. Calcium-induced calcium release from sarcoplasmic reticulum vesicles.
    Nagasaki K; Kasai M
    J Biochem; 1981 Sep; 90(3):749-55. PubMed ID: 7309698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Caffeine-induced calcium release from sarcoplasmic reticulum of a skeletal muscle.
    Sekiguchi T; Shimizu H
    J Pharmacobiodyn; 1987 Jan; 10(1):55-62. PubMed ID: 3585695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca++ releaser having caffeine-like properties, acts on Ca(++)-induced Ca++ release channels of sarcoplasmic reticulum.
    Seino A; Kobayashi M; Kobayashi J; Fang YI; Ishibashi M; Nakamura H; Momose K; Ohizumi Y
    J Pharmacol Exp Ther; 1991 Mar; 256(3):861-7. PubMed ID: 1706431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic AMP-induced enhancement of calcium accumulation by the sarcoplasmic reticulum with no modification of the sensitivity of the myofilaments to calcium in skinned fibres from a yeast skeletal muscle.
    Fabiato A; Fabiato F
    Biochim Biophys Acta; 1978 Mar; 539(2):253-60. PubMed ID: 204360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-gated calcium channels in sarcoplasmic reticulum of rabbit skinned skeletal muscle fibers.
    Volpe P; Salviati G; Chu A
    J Gen Physiol; 1986 Feb; 87(2):289-303. PubMed ID: 2419485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in rat skeletal muscle.
    Duke AM; Hopkins PM; Steele DS
    J Physiol; 2003 Sep; 551(Pt 2):447-54. PubMed ID: 12909676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tonic contraction of canine gastric muscle during long-lasting calcium removal and its dependence on magnesium.
    Filipponi K; Golenhofen K; Hofstetter V; Hohnsbein J; Lammel E; Lukanow J
    J Physiol; 1987 Dec; 393():375-97. PubMed ID: 3128659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: Ca2+-dependent passive Ca2+ efflux.
    Kirino Y; Osakabe M; Shimizu H
    J Biochem; 1983 Oct; 94(4):1111-8. PubMed ID: 6654846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of sodium, calcium and metabolic inhibitors on calcium efflux from goldfish heart ventricles.
    Busselen P; van Kerkhove E
    J Physiol; 1978 Sep; 282():263-83. PubMed ID: 722529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of caffeine on calcium efflux and calcium translocation in skeletal and visceral muscle.
    Huddart H; Syson AJ
    J Exp Biol; 1975 Aug; 63(1):131-42. PubMed ID: 1159357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium-induced calcium release mechanism from the sarcoplasmic reticulum in skinned crab muscle fibres.
    Goblet C; Mounier Y
    Cell Calcium; 1986 Apr; 7(2):61-72. PubMed ID: 3085951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of contracture on cooling of caffeine-treated frog skeletal muscle fibres.
    Horiuti K
    J Physiol; 1988 Apr; 398():131-48. PubMed ID: 3392668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased leakage of calcium ion from the sarcoplasmic reticulum of the mdx mouse.
    Takagi A; Kojima S; Ida M; Araki M
    J Neurol Sci; 1992 Jul; 110(1-2):160-4. PubMed ID: 1506855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobilization of a common source of smooth muscle Ca2+ by norepinephrine and methylxanthines.
    Deth RC; Lynch CJ
    Am J Physiol; 1981 May; 240(5):C239-47. PubMed ID: 6263100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue-induced alterations in Ca2+ and caffeine sensitivities of skinned muscle fibers.
    Williams JH; Ward CW; Klug GA
    J Appl Physiol (1985); 1993 Aug; 75(2):586-93. PubMed ID: 8226456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of osmolality and ionic strength on the mechanism of Ca2+ release in skinned skeletal muscle fibres of the toad.
    Lamb GD; Stephenson DG; Stienen GJ
    J Physiol; 1993 May; 464():629-48. PubMed ID: 8229822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake and caffeine-induced release of calcium in fast muscle fibers of Xenopus laevis: effects of MgATP and P(i).
    Stienen GJ; van Graas IA; Elzinga G
    Am J Physiol; 1993 Sep; 265(3 Pt 1):C650-7. PubMed ID: 8214021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cocaine on sarcoplasmic reticulum in skinned rat heart muscle.
    Tomita F; Bassett AL; Myerburg RJ; Kimura S
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H845-50. PubMed ID: 8456986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caffeine and Ca2+ stimulate mitochondrial oxidative phosphorylation in saponin-skinned human skeletal muscle fibers due to activation of actomyosin ATPase.
    Khuchua Z; Belikova Y; Kuznetsov AV; Gellerich FN; Schild L; Neumann HW; Kunz WS
    Biochim Biophys Acta; 1994 Dec; 1188(3):373-9. PubMed ID: 7803452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.