These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 6264083)
21. Dielectric properties of dipicrylamine-doped erythrocytes, cultured cells and lipid vesicles. Asami K Bioelectrochemistry; 2013 Aug; 92():14-21. PubMed ID: 23523956 [TBL] [Abstract][Full Text] [Related]
22. Behaviour of chemically modified sodium channels in frog nerve supports a three-state model of inactivation. Schmidtmayer J Pflugers Arch; 1985 May; 404(1):21-8. PubMed ID: 2409520 [TBL] [Abstract][Full Text] [Related]
23. Hydrophobic ions amplify the capacitive currents used to measure exocytotic fusion. Oberhauser AF; Fernandez JM Biophys J; 1995 Aug; 69(2):451-9. PubMed ID: 8527659 [TBL] [Abstract][Full Text] [Related]
24. Interactions between molecules of a steroid anaesthetic (alphaxalone) and ionic channels of nodal membrane in voltage-clamped myelinated nerve fibre. Benoit E; Carratù MR; Mitolo-Chieppa D Br J Pharmacol; 1988 Jul; 94(3):635-46. PubMed ID: 2460175 [TBL] [Abstract][Full Text] [Related]
25. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate. Smejtek P; Wang SR Biophys J; 1990 Nov; 58(5):1285-94. PubMed ID: 2291945 [TBL] [Abstract][Full Text] [Related]
26. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. Conti F; Hille B; Neumcke B; Nonner W; Stämpfli R J Physiol; 1976 Nov; 262(3):699-727. PubMed ID: 1087643 [TBL] [Abstract][Full Text] [Related]
27. Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. Röper J; Schwarz JR J Physiol; 1989 Sep; 416():93-110. PubMed ID: 2558178 [TBL] [Abstract][Full Text] [Related]
28. [Membrane currents and action potentials of myelinated nerve fibers and their modification by diphenylhydantoin and tocainide]. Schwarz JR EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1988 Sep; 19(3):115-22. PubMed ID: 2460310 [TBL] [Abstract][Full Text] [Related]
29. Induced capacitance in the squid giant axon. Lipophilic ion displacement currents. Fernández JM; Taylor RE; Bezanilla F J Gen Physiol; 1983 Sep; 82(3):331-46. PubMed ID: 6631402 [TBL] [Abstract][Full Text] [Related]
30. Interaction between bradykinin and voltage-sensitive sodium channels in myelinated nerve fibers. Carratù MR; Mitolo-Chieppa D Experientia; 1989 Apr; 45(4):346-9. PubMed ID: 2540021 [TBL] [Abstract][Full Text] [Related]
31. Chemical modification of potassium channel gating in frog myelinated nerve by trinitrobenzene sulphonic acid. Cahalan MD; Pappone PA J Physiol; 1983 Sep; 342():119-43. PubMed ID: 6313907 [TBL] [Abstract][Full Text] [Related]
32. The influence of pH on equilibrium effects of tetrodotoxin on myelinated nerve fibres of Rana esculenta. Ulbricht W; Wagner HH J Physiol; 1975 Oct; 252(1):159-84. PubMed ID: 492 [TBL] [Abstract][Full Text] [Related]
33. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Benz R; Läuger P; Janko K Biochim Biophys Acta; 1976 Dec; 455(3):701-20. PubMed ID: 999935 [TBL] [Abstract][Full Text] [Related]
34. Blocking and modifying actions of octanol on Na channels in frog myelinated nerve. Hirche G Pflugers Arch; 1985 Oct; 405(3):180-7. PubMed ID: 2415915 [TBL] [Abstract][Full Text] [Related]
35. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport. Benz R; Conti F Biophys J; 1986 Jul; 50(1):91-8. PubMed ID: 3730509 [TBL] [Abstract][Full Text] [Related]
36. A "convertible pore" model of neural membrane conductance. Wooldridge DE Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7238-42. PubMed ID: 6095278 [TBL] [Abstract][Full Text] [Related]
37. Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog. Cota G; Stefani E J Physiol; 1984 Jun; 351():135-54. PubMed ID: 6086902 [TBL] [Abstract][Full Text] [Related]
38. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials. Lönnendonker U Biochim Biophys Acta; 1989 Oct; 985(2):153-60. PubMed ID: 2553115 [TBL] [Abstract][Full Text] [Related]
39. The rate of action of tetrodotoxin on myelinated nerve fibres of Xenopus laevis and Rana esculenta. Schwarz JR; Ulbricht W; Wagner HH J Physiol; 1973 Aug; 233(1):167-94. PubMed ID: 4543328 [TBL] [Abstract][Full Text] [Related]
40. Changes in myelinated nerve fibres caused by insulating layers. Sommer RG; Schumann H; Koppenhoefer E Acta Physiol Scand; 1982 Mar; 114(3):413-7. PubMed ID: 6982598 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]