These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6265003)

  • 1. A dual effect of L-1-tosylamide-2-phenylethyl chloromethyl ketone on the respiratory metabolism of guinea pig phagocytes.
    Dri P; Zabucchi G; Bellavite P
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():175-80. PubMed ID: 6265003
    [No Abstract]   [Full Text] [Related]  

  • 2. A two-fold effect of L-1-tosylamide-2-phenylethyl chloromethyl ketone on the oxidative metabolism of guinea pig phagocytes.
    Dri P; Berton G; Patriarca P
    Inflammation; 1981 Sep; 5(3):223-39. PubMed ID: 7298162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [NADPH oxidase--O2- -generating system in phagocytes].
    Tanaka T; Ishimura Y
    Tanpakushitsu Kakusan Koso; 1988 Dec; 33(16):2756-62. PubMed ID: 2855141
    [No Abstract]   [Full Text] [Related]  

  • 4. Formation of superoxide anions and hydrogen peroxide by polymorphonuclear leukocytes stimulated with cytochalasin.
    Minakami S; Nabi ZF; Tatscheck B; Takeshige K
    Adv Exp Med Biol; 1982; 141():361-70. PubMed ID: 6283830
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of NADPH oxidase by aminoacyl chloromethane protease inhibitors in phorbol-ester-stimulated human neutrophils: a reinvestigation. Are proteases really involved in the activation process?
    Conseiller EC; Lederer F
    Eur J Biochem; 1989 Jul; 183(1):107-14. PubMed ID: 2546767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in leukocyte research.
    Foy MA; Simchowitz L
    Year Immunol; 1989; 4():208-17. PubMed ID: 2538972
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of quercetin, 1-tosylamido-2-phenylethyl chloromethyl ketone, cytochalasin A and nordihydroguaiaretic acid on lysosomal enzyme secretion, arachidonic acid metabolism and Ca2+ fluxes in rabbit neutrophils.
    Showell HJ; Naccache PH; Walenga RW; Dalecki M; Feinstein MB; Sha'afi RI; Becker EL
    J Reticuloendothel Soc; 1981 Sep; 30(3):167-81. PubMed ID: 6793724
    [No Abstract]   [Full Text] [Related]  

  • 8. The respiratory burst of phagocytes.
    Babior BM
    J Clin Invest; 1984 Mar; 73(3):599-601. PubMed ID: 6323522
    [No Abstract]   [Full Text] [Related]  

  • 9. Apparent Km of leukocyte O2 and H2O2 forming enzyme for oxygen.
    Kakinuma K; Kaneda M
    Adv Exp Med Biol; 1982; 141():351-60. PubMed ID: 6283829
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of neutrophil sulfhydryl groups by choloromethyl ketones. A mechanism for their inhibition of superoxide production.
    Tsan MF
    Biochem Biophys Res Commun; 1983 Apr; 112(2):671-7. PubMed ID: 6303328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of cell surface macromolecules sensitive to alkylating ketones in lysis by human peripheral blood NK cells.
    Dawson MM; Shipton U; Moore M
    Clin Exp Immunol; 1985 Jan; 59(1):91-100. PubMed ID: 3971601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formylpeptide chemotactic receptor on rabbit peritoneal neutrophils: change of receptor affinity and number by L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK).
    Mackin WM; Becker EL
    Int J Immunopharmacol; 1983; 5(5):365-75. PubMed ID: 6317580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide formation of polymorphonuclear leukocytes stimulated with cytochalasin D.
    Nabi ZF; Takeshige K; Hatae T; Minakami S
    Exp Cell Res; 1979 Dec; 124(2):293-300. PubMed ID: 228953
    [No Abstract]   [Full Text] [Related]  

  • 14. Absence of both subunits of cytochrome b558 in the UM384 cell line relative to the inability to generate superoxide anions.
    Champelovier P; Laporte F; Verhoeven AJ; Hilarius P; de Klein A; Revol C; Seigneurin D; Kolodie L
    Exp Hematol; 1993 Jul; 21(7):885-92. PubMed ID: 8391470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of macromolecular synthesis in tumors by L-1-tosylamido-2-phenylethyl chloromethyl ketone.
    Lea MA; Barra R; Koch MR; Hicks H; Daly C
    Biochem Biophys Res Commun; 1977 Mar; 75(2):519-24. PubMed ID: 192237
    [No Abstract]   [Full Text] [Related]  

  • 16. The mechanism of control of phagocytic metabolism.
    Rossi F; Patriarca P; Romeo D; Zabucchi G
    Adv Exp Med Biol; 1976; 73 PT-A():205-23. PubMed ID: 187028
    [No Abstract]   [Full Text] [Related]  

  • 17. Detection and visualization of oxidase activity in phagocytes.
    Hallett MB; Cole C; Dewitt S
    Methods Mol Biol; 2003; 225():61-7. PubMed ID: 12769474
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of protease inhibitors with the catalytic subunit of cAMP-dependent protein kinase.
    Kinzel V; König N
    Biochem Biophys Res Commun; 1980 Mar; 93(2):349-53. PubMed ID: 6248039
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of platelet thromboxane synthetase by L-1-tosylamido-2-phenylethyl chloromethyl ketone.
    Yahn DM; Feinstein MB
    Prostaglandins; 1981 Feb; 21(2):243-54. PubMed ID: 7194491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and functions of the oxygen radicals producing respiration of phagocytes.
    Rossi F; Della Bianca V; de Togni P
    Comp Immunol Microbiol Infect Dis; 1985; 8(2):187-204. PubMed ID: 3002714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.