These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48 related articles for article (PubMed ID: 6265013)
21. Design of gene circuitry by natural selection: analysis of the lactose catabolic system in Escherichia coli. Savageau MA Biochem Soc Trans; 1999 Feb; 27(2):264-70. PubMed ID: 10093745 [No Abstract] [Full Text] [Related]
22. Effect of DNA looping on the induction kinetics of the lac operon. Narang A J Theor Biol; 2007 Aug; 247(4):695-712. PubMed ID: 17490688 [TBL] [Abstract][Full Text] [Related]
23. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Oehler S; Alberti S; Müller-Hill B Nucleic Acids Res; 2006; 34(2):606-12. PubMed ID: 16432263 [TBL] [Abstract][Full Text] [Related]
25. Dynamics and bistability in a reduced model of the lac operon. Yildirim N; Santillan M; Horike D; Mackey MC Chaos; 2004 Jun; 14(2):279-92. PubMed ID: 15189056 [TBL] [Abstract][Full Text] [Related]
26. [Introduction of the chromogenic gene to the plant growth-promoting rhizobacteria of cucumber]. Chen X; Zhang B; Lou B; Ryder MH Wei Sheng Wu Xue Bao; 2001 Jun; 41(3):287-92. PubMed ID: 12549081 [TBL] [Abstract][Full Text] [Related]
27. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. Manoil C; Bailey J J Mol Biol; 1997 Mar; 267(2):250-63. PubMed ID: 9096223 [TBL] [Abstract][Full Text] [Related]
28. Determinants of bistability in induction of the Escherichia coli lac operon. Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824 [TBL] [Abstract][Full Text] [Related]
29. A portion of IS100 regulates gene expression in Yersinia pseudotuberculosis and shares essentially identical sequence homology with a repetitive sequence isolated from Yersinia pestis. Torosian SD; Zsigray RM Contrib Microbiol Immunol; 1995; 13():314-7. PubMed ID: 8833861 [No Abstract] [Full Text] [Related]
30. Design of bacterial hosts for lac-based expression vectors. Schweizer HP; Karkhoff-Schweizer RR Methods Mol Biol; 1997; 62():17-27. PubMed ID: 9108509 [No Abstract] [Full Text] [Related]
31. [Decrease in the level of DeoR-dependent repression of the deo operon as a result of integration of foreign DNA fragments into the interoperator deoO1-deoO2 region of the Escherichia coli chromosome]. Mochul'skaia NA; Mironov AS; Mashko SV Genetika; 1994 Sep; 30(9):1175-83. PubMed ID: 8001800 [TBL] [Abstract][Full Text] [Related]
32. Modeling network dynamics: the lac operon, a case study. Vilar JM; Guet CC; Leibler S J Cell Biol; 2003 May; 161(3):471-6. PubMed ID: 12743100 [TBL] [Abstract][Full Text] [Related]
34. Sequence relationships between plasmids carrying genes for lactose utilization. Cornelis G J Gen Microbiol; 1981 May; 124(1):91-7. PubMed ID: 6275007 [TBL] [Abstract][Full Text] [Related]
35. Tn951: a new transposon carrying a lactose operon. Cornelis G; Ghosal D; Saedler H Mol Gen Genet; 1978 Apr; 160(2):215-24. PubMed ID: 349354 [TBL] [Abstract][Full Text] [Related]
36. The art and design of genetic screens: Escherichia coli. Shuman HA; Silhavy TJ Nat Rev Genet; 2003 Jun; 4(6):419-31. PubMed ID: 12776212 [TBL] [Abstract][Full Text] [Related]
37. [Discovery and study of Tn951, the first lactose transposon]. Cornelis G Bull Mem Acad R Med Belg; 1980; 135(5):310-39. PubMed ID: 6265013 [No Abstract] [Full Text] [Related]
38. The lactose transposon Tn951: characterization of transposition. Cornelis G; Meier U; Hoeksma G; Ghosal D; Cullum J; Saedler H Ann Microbiol (Paris); 1980; 131(3):233-47. PubMed ID: 6252805 [TBL] [Abstract][Full Text] [Related]