These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6265029)

  • 1. Potassium stimulated 45Ca uptake by cortical slices of rat brain: effects of cyclic nucleotide derivatives.
    Ichida S; Osugi T; Noguchi Y; Yoshida H
    Brain Res; 1981 Jun; 213(2):472-5. PubMed ID: 6265029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of dibutyryl cyclic GMP on potassium-stimulated 45Ca uptake by synaptosomes from rat brain.
    Ichida S; Yonehara N; Watanabe Y; Yoshida H
    Brain Res; 1980 Jun; 192(2):487-94. PubMed ID: 6247026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cyclic nucleotide derivatives on the release of ACh from cortical slices of the rat brain.
    Yonehara N; Matsuda T; Saito K; Ishida H; Yoshida H
    Brain Res; 1980 Jan; 182(1):137-44. PubMed ID: 6243230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dibutyryl-cyclic GMP stimulation of Ca2+ -ATPase activity in rat brain synaptic membranes.
    Stauderman KA; Jones DJ; Ross DH
    J Neurochem; 1985 Sep; 45(3):970-2. PubMed ID: 2993519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central effects of dibutyryl cyclic AMP and GMP on the temperature in conscious rabbits.
    Kandasamy SB; Williams BA
    Brain Res; 1983 Oct; 277(2):311-20. PubMed ID: 6315145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory effects of dibutyryl cyclic AMP, noradrenaline and theophylline on 45Ca uptake by synaptosomes from rat brain.
    Ribeiro JA; Sá-Almeida AM
    Arch Int Pharmacodyn Ther; 1984 Aug; 270(2):215-31. PubMed ID: 6148920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dibutyryl cyclic adenosine monophosphate and dibutyryl cyclic guanosine monophosphate on neuron activity of suprachiasmatic nucleus in rat hypothalamic slice preparation.
    Liou SY; Shibata S; Shiratsuchi A; Ueki S
    Neurosci Lett; 1986 Jun; 67(3):339-43. PubMed ID: 3016614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium and cyclic nucleotide interaction in secretion of amylase from rat pancreas in vitro.
    Singh M
    J Physiol; 1979 Nov; 296():159-76. PubMed ID: 93637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid and steroid production by intact mouse adrenal glands and cell suspensions: effects of nucleotide derivatives and substrates.
    Hinson J; Birmingham MK
    J Endocrinol; 1985 Jan; 104(1):105-11. PubMed ID: 2981949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs.
    Kandasamy SB; Williams BA
    Neuropharmacology; 1983 Jan; 22(1):65-70. PubMed ID: 6302546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine metabolism in rat brain following the intracerebroventricular administration of cyclic nucleotides.
    Kehr W; Debus G; Thiede HM
    J Neural Transm; 1982; 55(1):1-8. PubMed ID: 6182268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different effects of cyclic nucleotide derivatives upon the rat oocyte-cumulus complex in vitro.
    Törnell J; Brännström M; Hillensjö T
    Acta Physiol Scand; 1984 Dec; 122(4):507-13. PubMed ID: 6098139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cyclic nucleotide derivatives on the Na+ pump activity and the release of sialic acid in dog submandibular glands.
    Komabayashi T; Izawa T; Nakamura T; Suda K; Shinoda S; Tsuboi M
    Res Commun Chem Pathol Pharmacol; 1988 Apr; 60(1):137-40. PubMed ID: 2837818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stimulation on the steroid profile formed by rat adrenal capsule tissue incubated in vitro.
    Vinson GP; Whitehouse BJ
    J Steroid Biochem; 1982 Aug; 17(2):159-64. PubMed ID: 6287107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cyclic nucleotides on lipid biosynthesis in mouse mammary gland explants.
    Cameron CM; Rillema JA
    Proc Soc Exp Biol Med; 1983 Jul; 173(3):306-11. PubMed ID: 6191334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by low density lipoproteins of mitogen-stimulated cyclic nucleotide production by lymphocytes.
    Hui DY; Harmony JA
    J Biol Chem; 1980 Feb; 255(4):1413-9. PubMed ID: 6243636
    [No Abstract]   [Full Text] [Related]  

  • 17. The phosphorylation of salivary gland chromatin proteins following treatment of rats with dibutyryl cyclic AMP and dibutyryl cyclic GMP.
    Itzhaki S; Capps MJ
    Gen Pharmacol; 1978; 9(5):355-9. PubMed ID: 212348
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of cyclic nucleotides on the longitudinal internal resistance in the rabbit sinus node.
    Tuganowski W; Bukowski M; Korczyńska I; Wasik K; Wójcik B
    Pol J Pharmacol Pharm; 1988; 40(1):5-9. PubMed ID: 2853336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic agonists and dibutyryl cyclic guanosine monophosphate inhibit the norepinephrine-induced accumulation of cyclic adenosine monophosphate in the rat cerebral cortex.
    Palmer GC; Chronister RB; Palmer SJ
    Neuroscience; 1980; 5(2):319-22. PubMed ID: 6246467
    [No Abstract]   [Full Text] [Related]  

  • 20. Opposite effects of dibutyryl cyclic GMP and dibutyryl cyclic AMP on glucose 1,6-diphosphate levels and the activities of glucose 1,6-diphosphate phosphatase and phosphofructokinase in diaphragm muscle.
    Beitner R; Cohen TJ
    FEBS Lett; 1980 Jun; 115(2):197-200. PubMed ID: 6249639
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.