These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6265710)

  • 21. Gated, ion-selective channels observed with patch pipettes in the absence of membranes: novel properties of a gigaseal.
    Sachs F; Qin F
    Biophys J; 1993 Sep; 65(3):1101-7. PubMed ID: 7694669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-Markov models for brownian dynamics permeation in biological ion channels.
    Krishnamurthy V; Luk KY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):273-81. PubMed ID: 21071815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature.
    Antonov VF; Petrov VV; Molnar AA; Predvoditelev DA; Ivanov AS
    Nature; 1980 Feb; 283(5747):585-6. PubMed ID: 6153458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mesoscopic approach to understanding the mechanisms underlying the ion permeation on the discrete-state diagram.
    Oiki S; Iwamoto M; Sumikama T
    J Gen Physiol; 2010 Sep; 136(3):363-5. PubMed ID: 20805578
    [No Abstract]   [Full Text] [Related]  

  • 25. Framework model for single proton conduction through gramicidin.
    Schumaker MF; Pomès R; Roux B
    Biophys J; 2001 Jan; 80(1):12-30. PubMed ID: 11159380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol-dependent gramicidin A channel inactivation in red blood cell membranes and lipid bilayer membranes.
    Schagina LV; Blaskó K; Grinfeldt AE; Korchev YE; Lev AA
    Biochim Biophys Acta; 1989 Jan; 978(1):145-50. PubMed ID: 2464373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube.
    Sumikama T; Saito S; Ohmine I
    J Phys Chem B; 2006 Oct; 110(41):20671-7. PubMed ID: 17034258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions.
    Andersen OS; Procopio J
    Acta Physiol Scand Suppl; 1980; 481():27-35. PubMed ID: 6159776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-consistent analytic solution for the current and the access resistance in open ion channels.
    Luchinsky DG; Tindjong R; Kaufman I; McClintock PV; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021925. PubMed ID: 19792169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gramicidin channels.
    Andersen OS
    Annu Rev Physiol; 1984; 46():531-48. PubMed ID: 6201133
    [No Abstract]   [Full Text] [Related]  

  • 31. Channels in epithelial cell membranes and junctions.
    Diamond JM
    Fed Proc; 1978 Oct; 37(12):2639-43. PubMed ID: 29791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slow permeation of organic cations in acetylcholine receptor channels.
    Sanchez JA; Dani JA; Siemen D; Hille B
    J Gen Physiol; 1986 Jun; 87(6):985-1001. PubMed ID: 2425045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion channels: from conductance to structure.
    Bezanilla F
    Neuron; 2008 Nov; 60(3):456-68. PubMed ID: 18995820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium channels: mechanisms of selectivity, permeation, and block.
    Tsien RW; Hess P; McCleskey EW; Rosenberg RL
    Annu Rev Biophys Biophys Chem; 1987; 16():265-90. PubMed ID: 2439098
    [No Abstract]   [Full Text] [Related]  

  • 35. The kinetics of ion movements in the gramicidin channel.
    Urban BW; Hladky SB; Haydon DA
    Fed Proc; 1978 Oct; 37(12):2628-32. PubMed ID: 81148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevention of rundown in electrophysiological recording.
    Horn R; Korn SJ
    Methods Enzymol; 1992; 207():149-55. PubMed ID: 1382181
    [No Abstract]   [Full Text] [Related]  

  • 37. Transport mechanisms across cell membranes.
    Ellory JC; Elford BC; Newbold CI
    Parasitology; 1988; 96 Suppl():S5-9. PubMed ID: 2453832
    [No Abstract]   [Full Text] [Related]  

  • 38. The interpretation of membrane current voltage relations: a Nernst-Planck analysis.
    Attwell D; Jack J
    Prog Biophys Mol Biol; 1978; 34(2):81-107. PubMed ID: 375300
    [No Abstract]   [Full Text] [Related]  

  • 39. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Parametric resonance and amplification of periodic disturbances in membranes containing ion channels with inactivation].
    Markevich NI; Sel'kov EE
    Biofizika; 1985; 30(5):853-7. PubMed ID: 2413904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.