These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 6265737)

  • 21. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus.
    Kawamoto K; Horibe I; Uchida K
    J Biochem; 1989 Dec; 106(6):1049-53. PubMed ID: 2628421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01.
    Chae JP; Valeriano VD; Kim GB; Kang DK
    J Appl Microbiol; 2013 Jan; 114(1):121-33. PubMed ID: 23035872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity of cholylglycine hydrolase for the hydrolysis of bile acid conjugates.
    Batta AK; Salen G; Shefer S
    J Biol Chem; 1984 Dec; 259(24):15035-9. PubMed ID: 6096355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes.
    Parasar B; Chang PV
    Methods Enzymol; 2022; 664():85-102. PubMed ID: 35331380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrolysis of conjugated bile acids by cell-free extracts from aerobic bacteria.
    Yesair DW; Himmelfarb P
    Appl Microbiol; 1970 Feb; 19(2):295-300. PubMed ID: 4314376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens.
    Nair PP; Gordon M; Gordon S; Reback J; Mendeloff AI
    Life Sci; 1965 Oct; 4(19):1887-92. PubMed ID: 4284941
    [No Abstract]   [Full Text] [Related]  

  • 27. A continuous fluorescence assay for simple quantification of bile salt hydrolase activity in the gut microbiome.
    Brandvold KR; Weaver JM; Whidbey C; Wright AT
    Sci Rep; 2019 Feb; 9(1):1359. PubMed ID: 30718677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absence of cecal secondary bile acids in gnotobiotic mice associated with two human intestinal bacteria with the ability to dehydroxylate bile acids in vitro.
    Narushima S; Itoh K; Takamine F; Uchida K
    Microbiol Immunol; 1999; 43(9):893-7. PubMed ID: 10553682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.
    Song Z; Cai Y; Lao X; Wang X; Lin X; Cui Y; Kalavagunta PK; Liao J; Jin L; Shang J; Li J
    Microbiome; 2019 Jan; 7(1):9. PubMed ID: 30674356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bile acid deconjugation and attachment of chicken gut bacteria: their possible role in growth depression.
    Cole CB; Fuller R
    Br Poult Sci; 1984 Apr; 25(2):227-31. PubMed ID: 6733554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens.
    Allison C; Macfarlane GT
    Appl Environ Microbiol; 1989 Nov; 55(11):2894-8. PubMed ID: 2560361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of steroids by intestinal bacteria. I. Deconjugation of bile salts.
    Aries V; Hill MJ
    Biochim Biophys Acta; 1970 May; 202(3):526-34. PubMed ID: 4315139
    [No Abstract]   [Full Text] [Related]  

  • 33. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction.
    Horáčková Š; Plocková M; Demnerová K
    Biotechnol Adv; 2018; 36(3):682-690. PubMed ID: 29248683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deconjugation of bile acids by intestinal bacteria: review of literature and additional studies.
    Shimada K; Bricknell KS; Finegold SM
    J Infect Dis; 1969 Mar; 119(3):273-81. PubMed ID: 4888907
    [No Abstract]   [Full Text] [Related]  

  • 35. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer.
    Sun L; Zhang Y; Cai J; Rimal B; Rocha ER; Coleman JP; Zhang C; Nichols RG; Luo Y; Kim B; Chen Y; Krausz KW; Harris CC; Patterson AD; Zhang Z; Takahashi S; Gonzalez FJ
    Nat Commun; 2023 Feb; 14(1):755. PubMed ID: 36765047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 12 beta-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 alpha-dehydrogenating Eubacterium lentum.
    Edenharder R; Schneider J
    Appl Environ Microbiol; 1985 Apr; 49(4):964-8. PubMed ID: 4004226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.
    Jarocki P; Podleśny M; Glibowski P; Targoński Z
    PLoS One; 2014; 9(12):e114379. PubMed ID: 25470405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase.
    Kumar RS; Brannigan JA; Prabhune AA; Pundle AV; Dodson GG; Dodson EJ; Suresh CG
    J Biol Chem; 2006 Oct; 281(43):32516-25. PubMed ID: 16905539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epimerization versus dehydroxylation of the 7 alpha-hydroxyl- group of primary bile acids: competitive studies with Clostridium absonum and 7 alpha-dehydroxylating bacteria (Eubacterium sp.).
    Macdonald IA; Hutchison DM
    J Steroid Biochem; 1982 Sep; 17(3):295-303. PubMed ID: 6957693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotransformation of bile acids by clostridia.
    Owen RW
    J Med Microbiol; 1985 Oct; 20(2):233-8. PubMed ID: 2864454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.